REVIEW DAY 3: TRIGONOMETRY REVIEW

Three Views of Trigonometric Functions

- graphs in the *xy*-plane
- sides of a right triangle
- points on the unit circle

The Graphs

On the axes below, graph *at least two cycles* of $f(x) = \sin x$, $f(x) = \cos x$, and $f(x) = \tan x$. Label all *x*- and *y*-intercepts, any asymptotes, and all maximums and minimums.

The Triangle Defintion

Sketch a right triangle with side *a* adjacent to an angle θ , *o* opposite of the angle θ and hypotenuse *h*. Define each of the six trigonometric functions in terms of that triangle.

a) $\sin \theta$	b) $\cos \theta$	c) $\tan \theta$	d) $\sec \theta$	e) $\csc \theta$	f) $\cot \theta$
------------------	------------------	------------------	------------------	------------------	------------------

The Unit Circle Approach

Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of ALL of the points on the unit circle.

Each of the problems below can be solved using one of the approaches above: graphs, triangles, or unit circle. When you solve each problem, think about which method is the best one.

1. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine and tangent of the base angle α .

- 2. Without a calculator evaluate:
 - (a) $\sin(\frac{2\pi}{3})$ (b) $\cos(\frac{5\pi}{4})$ (c) $\tan(\frac{-\pi}{4})$

3. Solve for x.

(c) $\tan x = 0$

(b) $\sin x = 1$ (d) $\sin x = 1/2$ (Find all solutions in $[0, 2\pi]$.)

4. Find the domain of $f(x) = \csc(x/2)$.

5. Solve the equation $2 + 2\cos(x) = 0$.

6. Determine the *x*-value(s) where the functions $g(x) = x + \sin(x - 1)$ and h(x) = 1 + x.