Review Day 3: Trigonometry Review

Three Views of Trigonometric Functions

- graphs in the $x y$-plane
- sides of a right triangle
- points on the unit circle

The Graphs

On the axes below, graph at least two cycles of $f(x)=\sin x, f(x)=\cos x$, and $f(x)=\tan x$. Label all x - and y-intercepts, any asymptotes, and all maximums and minimums.

The Triangle Defintion

Sketch a right triangle with side a adjacent to an angle θ, o opposite of the angle θ and hypotenuse h. Define each of the six trigonometric functions in terms of that triangle.
a) $\sin \theta$
b) $\cos \theta$
c) $\tan \theta$
d) $\sec \theta$
e) $\csc \theta$
f) $\cot \theta$

The Unit Circle Approach

Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of ALL of the points on the unit circle.

Each of the problems below can be solved using one of the approaches above: graphs, triangles, or unit circle. When you solve each problem, think about which method is the best one.

1. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine and tangent of the base angle α.

2. Without a calculator evaluate:
(a) $\sin \left(\frac{2 \pi}{3}\right)$
(b) $\cos \left(\frac{5 \pi}{4}\right)$
(c) $\tan \left(\frac{-\pi}{4}\right)$
3. Solve for x.
(c) $\tan x=0$
(a) $\cos x=1$
(b) $\sin x=1$
(d) $\sin x=1 / 2$ (Find all solutions in $[0,2 \pi]$.)
4. Find the domain of $f(x)=\csc (x / 2)$.
5. Solve the equation $2+2 \cos (x)=0$.
6. Determine the x-value(s) where the functions $g(x)=x+\sin (x-1)$ and $h(x)=1+x$.
