1. State the definition of the derivative of a function $f(x)$ at $x=a$.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

2. Let $f(x)=2 x-\frac{2}{x}$.

$$
\begin{aligned}
& f^{\prime}(a)\left.=\lim _{h \rightarrow 0} \frac{\left[2(a+h)-\frac{2}{a+h}\right]-\left[2 a-\frac{2}{a}\right]}{h}\right] \\
&=\lim _{h \rightarrow 0} \frac{2 a+2 h-2 a+\frac{2}{a}-\frac{2}{a+h}}{h}=\lim _{h \rightarrow 0}\left[2+\frac{1}{h}\left(\frac{2 a+2 h-2 a}{(a)(a+h)}\right)\right] \\
&=\lim _{h \rightarrow 0}\left[2+\frac{2}{(a)(a+h)}\right]=2+\frac{2}{a^{2}}
\end{aligned}
$$

(b) (Your answer to part (a) should have been $f^{\prime}(a)=2+\frac{2}{a^{2}}$. Find the slope of the tangent line to $f(x)$ when $x=-1$.

$$
f^{\prime}(-1)=2+\frac{2}{(-1)^{2}}=4
$$

(c) Write the equation of the line tangent to $f(x)$ when $x=-1$.

$$
\begin{aligned}
& f(-1)=2(-1)-\frac{2}{(-1)}=-2+2=0 \\
& y-0=4(x+1) \quad \text { or } y=4 x+4)
\end{aligned}
$$

3. Suppose N represents the number of people in the United States who travel by car to another state for a vacation this Memorial Day weekend when the average price of gasoline is p dollars per gallon.
(a) What are the units of $d N / d p$?
(b) In the context of the problem, write a sentence interpreting $\frac{d N}{d p}$.
$\frac{d N}{d p}$ gives the instantaneous rate of change of people relive to a change in price of gas.
(c) Would you expect $d N / d p$ to be positive or negative? Explain your answer.

Negative. As the price of gas goes up, I would expect the \# of people driving to decrease.
4. The graph of $f(x)$ is sketched below. On a separate set of axes, give a rough sketch $f^{\prime}(x)$.

5. Find the domain of each function. Write your answer in interval notation.
(a) $f(x)=\sqrt{x^{2}-x-6}$
(b) $g(t)=\ln (t+6)$
need $x^{2}-x-6>0$ or $(x-3)(x+2)>0$
 $t+6>0$ so $t>-6$
Ans: $(-6, \infty)$ $\frac{\text { Aus: }}{(-\infty,-2) \cup(3, \infty)}$
6. State the definition of "The function $f(x)$ is continuous at $x=a$ ".

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

7. Suppose

$$
f(x)=\left\{\begin{array}{cc}
-\frac{2}{x} & x<2 \\
\frac{x}{x-3} & x \geq 2
\end{array}\right.
$$

Is $f(x)$ continuous at $x=0$? At $x=2$? Justify your answers using the definition of continuity.

$$
\text { at } x=0 \text { ? No. }
$$ f is undefined at $x=0$

$\|$
at $x=2$? No.

$$
\begin{aligned}
& \text { at } x=2 \text { ? No. } \\
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{-2}{x}=-1 \neq-2=\lim _{x \rightarrow 2^{+}} \frac{x}{x-3}=\lim _{x \rightarrow 2^{+}} f(x)
\end{aligned}
$$

8. Find the limit or show that it does not exist. Make sure you are writing your mathematics correctly and clearly.

$\frac{4}{0}$ (b) $\lim _{r \rightarrow 16^{-}} \frac{\sqrt{r}}{(r-16)^{3}}=-\infty$
as $r \rightarrow 16^{-}(r \approx 15.9), \begin{aligned} & \sqrt{r} \rightarrow 4>0 \\ & r-16\end{aligned} \quad \rightarrow 0^{-}<0$
(c) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}+2 x-3}=\lim _{x \rightarrow-3} \frac{(x+3)(x-3)}{(x+3)(x-1)}=\lim _{x \rightarrow-3} \frac{x-3}{x-1}=\frac{-6}{-4}$

$$
=3 / 2
$$

9. (a) Write a formula for a function with a horizontal asymptote at $y=4 / 3$ and a vertical asymptote at $x=5$.

$$
f(x)=\frac{4 x}{3(x-5)}
$$

(b) Sketch the graph of your function from part (a).

$$
x=5
$$

(c) Use limits to demonstrate that your function really does have a vertical asymptote at $x=5$

$$
\lim _{x \rightarrow 5^{+}} \frac{4 x}{3(x-5)}=+\infty
$$

$$
\text { tlc as } x \rightarrow 5^{+} \quad(x \approx 5.1)
$$

$$
4 x \rightarrow 20>0
$$

$$
3(x-5) \rightarrow 0^{+}>0
$$

(d) Use limits to demonstrate that your function really does have a horizontal asymp-

$$
\lim _{x \rightarrow \infty} \frac{4 x}{3(x-5)}=\lim _{x \rightarrow \infty} \frac{4}{3-\frac{15}{x}}=\frac{4}{3-0}=\frac{4}{3}
$$

10. Use the Intermediate Value Theorem to show $\ln x=x-5$ has a solution. (Hint: Show there is a solution in the interval $\left[1, e^{5}\right]$.)
Let $f(x)=\ln x-x+5$. Note $f(x)$ is cont.hnows Now,

$$
f(1)=\ln 1-1+5=4>0
$$

$$
\begin{aligned}
& 04 \\
& \text { and } f\left(e^{5}\right)=5-e^{5}+5 \\
& 22 \geqslant 0
\end{aligned}
$$

$$
>22>0 .
$$

Since f is positive at $x=1$ and negative at $x=e^{5}$, $f(x)$ must equal zero somewhere in between.

