1. State the definition of the derivative of a function $f(x)$ at $x=a$.
2. Let $f(x)=2 x-\frac{2}{x}$.
(a) Use the definition to find the derivative of $f^{\prime}(a)$.
(b) (Your answer to part (a) should have been $f^{\prime}(a)=2+\frac{2}{a^{2}}$. Find the slope of the tangent line to $f(x)$ when $x=-1$.
(c) Write the equation of the line tangent to $f(x)$ when $x=-1$.
3. Suppose N represents the number of people in the United States who travel by car to another state for a vacation this Memorial Day weekend when the average price of gasoline is p dollars per gallon.
(a) What are the units of $d N / d p$?
(b) In the context of the problem, write a sentence interpreting $\frac{d N}{d p}$.
(c) Would you expect $d N / d p$ to be positive or negative? Explain your answer.
4. The graph of $f(x)$ is sketched below. On a separate set of axes, give a rough sketch $f^{\prime}(x)$.

5. Find the domain of each function. Write your answer in interval notation.
(a) $f(x)=\sqrt{x^{2}-x-6}$
(b) $g(t)=\ln (t+6)$
6. State the definition of "The function $f(x)$ is continuous at $x=a$ ".
7. Suppose

$$
f(x)=\left\{\begin{array}{cc}
-\frac{2}{x} & x<2 \\
\frac{x}{x-3} & x \geq 2
\end{array}\right.
$$

Is $f(x)$ continuous at $x=0$? At $x=2$? Justify your answers using the definition of continuity.
8. Find the limit or show that it does not exist. Make sure you are writing your mathematics correctly and clearly.
(a) $\lim _{x \rightarrow \infty} \frac{\sqrt[3]{8 x^{3}+1}}{2-5 x}$
(b) $\lim _{r \rightarrow 16^{-}} \frac{\sqrt{r}}{(r-16)^{3}}$
(c) $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}$
9. (a) Write a formula for a function with a horizontal asymptote at $y=4 / 3$ and a vertical asymptote at $x=5$.
(b) Sketch the graph of your function from part(a).
(c) Use limits to demonstrate that your function really does have a vertical asymptote at $x=5$
(d) Use limits to demonstrate that your function really does have a horizontal asymptote at $y=4 / 3$.
10. Use the Intermediate Value Theorem to show $\ln x=x-5$ has a solution. (Hint: Show there is a solution in the interval $\left[1, e^{5}\right]$.)

