1. Sketch the graph of an example of a function f that satisfies all of the given conditions.
(a) $f(0)=2$
(b) $f(3)=1$
(c) $\lim _{x \rightarrow 0} f(x)=1$
(d) $\lim _{x \rightarrow 3^{-}} f(x)=-2$
(e) $\lim _{x \rightarrow 3^{+}} f(x)=4$
(f) $\lim _{x \rightarrow-1^{+}} f(x)=\infty$

2. Sketch a graph $f(x)$ such that $\lim _{x \rightarrow 3} f(x)=\infty$.

3. (a) Use a calculator and a table of values to determine the limit: $\lim _{x \rightarrow \mathbf{1}^{-}} x \sec \left(\frac{\pi x}{2}\right)=\infty$

x	0.5	0.9	0.99	0.9999	0.99999999
$x \sec \left(\frac{x \pi}{2}\right)$	0.707	5.75	63.0	6365	$6.3 \times 10^{7} 2$
$=\frac{x}{\cos (\pi x / 2)}$					

(b) Use mathematical reasoning to show that your answer in part (a) is correct.

This is a hint that real life rarely offer...
4. Without using a calculator, determine the (infinite) limit. Explain your reasoning.

$$
\text { (a) } \lim _{x \rightarrow 3^{-}} \frac{\sqrt{x}}{x-3}=-\infty
$$

asides

$$
x \approx 2.9
$$

$$
\cos x \rightarrow 3^{-}, \quad \sqrt{x} \rightarrow \sqrt{3}
$$

$$
x-3 \rightarrow 0^{-}
$$

(b) $\lim _{x \rightarrow 3^{+}} \frac{\sqrt{x}}{x-3}^{+}=\infty$ $x \approx 3.1$

$$
\text { as } x \rightarrow 3^{+}, \quad \begin{aligned}
& \sqrt{x} \rightarrow \sqrt{3} \\
& \\
& x \rightarrow 3 \rightarrow 0^{+}
\end{aligned}
$$

(c) $\lim _{x \rightarrow 3^{+}} \frac{2-10 x}{x-3}=-\infty$

$$
\begin{aligned}
x & \approx 3.1 \\
\operatorname{as} x & \rightarrow 3^{+}, \quad 2-10 x
\end{aligned} \begin{aligned}
& \rightarrow-28 \\
x-3 & \rightarrow 0^{+}
\end{aligned}
$$

(d) $\lim _{x \rightarrow 3^{+}} \ln (x-3)=-\infty$ as $x \rightarrow 3^{+}, x-3 \rightarrow 0^{+}$

(e) Why didn't we ask you to find $\lim _{x \rightarrow 3^{-}} \ln (x-3)$?

If $x<3$, then $x-3<0$. So $\ln (x-3)$ isn't defined.

