1. Sketch the graph of an example of a function *f* that satisfies *all* of the given conditions.

2. Sketch a graph f(x) such that $\lim_{x \to 3} f(x) = \infty$.

3. (a) Use a calculator and a table of values to determine the limit: $\lim_{x \to 1^-} x \sec(\pi x)$.

	1		,	1	
×	0.5	0.9	0.99	0,9999	0.999999999
X Sec (XII)	0.707	5.75	63.0	6365	6.3×107
= <u>×</u> cos(**/2)					

(b) Use mathematical reasoning to show that your answer in part (a) is correct.

as
$$x \to 1^-$$
, $x \to 1$, but $\cos(\frac{\pi x}{2}) \to 0^+$.
So $\frac{1}{\cos(\frac{\pi x}{2})} \to \infty$.

This is a hint that real life rarely offers...

4. Without using a calculator, determine the (infinite) limit. Explain your reasoning.

(a)
$$\lim_{x \to 3^{-}} \frac{\sqrt{x}}{x-3} = -\infty$$
(b)
$$\lim_{x \to 3^{+}} \frac{\sqrt{x}}{x-3} = 0$$
(c)
$$\lim_{x \to 3^{+}} \frac{\sqrt{x}}{x-3} = \infty$$
(d)
$$\lim_{x \to 3^{+}} \frac{\sqrt{x}}{x-3} = \infty$$
(e)
$$\lim_{x \to 3^{+}} \frac{\sqrt{x}}{x-3} = -\infty$$
(f)
$$\lim_{x \to 3^{+}} \frac{2-10x}{x-3} = -\infty$$
(f)
$$\lim_{x \to 3^{+}} \frac{2-10x}{x-3} = -\infty$$
(f)
$$\lim_{x \to 3^{+}} \frac{2-10x}{x-3} = -\infty$$
(f)
$$\lim_{x \to 3^{+}} \frac{1}{x-3} = -\infty$$
(f)
$$\lim_{x \to 3^{+}} \frac{1}{x-3} = -\infty$$
(f)
$$\lim_{x \to 3^{+}} \frac{1}{x-3} = -\infty$$
(g)
$$\lim_{x \to 3^{+}} \frac{1}{x-3} = 0^{+}$$
(h)
$$\lim_{x \to 3^{+}} \frac{1}{x-3} = 0^{+}$$
(h

UAF Calculus 1

+æ.