§2.2 The Limit of a Function

Symbols $\quad \lim _{x \rightarrow a} f(x)=L$
words "the limit of $f(x)$, as $x$ approaches $a$, is $L$ "
meaning The out put of $f(x)$ can be forced arbitrarily close to $L$ by picking $x$ 's sufficiently close to $a$.
or
as $x$ gets close to a, $f(x)$ gets close to $L$
picture



Alternatively: $\lim _{x \rightarrow a^{+}} f(x)=M \quad \lim _{x \rightarrow a^{-}} f(x)=L$
right hand limit left hand limit

- How else can a limit fail to exist? approach infinity, Kory stuff
- Does the $y$-value at $x=a$ affect whether the on $y=f(x)$
limit exists? (No)

1. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a) $\lim _{x \rightarrow 4^{-}} f(x)=\frac{16}{4}$
(b) $\lim _{x \rightarrow 4^{+}} f(x)=4$
(c) $\lim _{x \rightarrow 4} f(x)=$ DUE
(d) $f(4)=$ $\qquad$
(e) $\lim _{x \rightarrow 6^{-}} f(x)=\frac{6}{-4}$
(f) $\lim _{x \rightarrow 6^{+}} f(x)=-4$
(g) $\lim _{x \rightarrow 6} f(x)=$ DNE
(h) $f(6)=6$
(i) $\lim _{x \rightarrow 8} f(x)=-4$
(j) $f(8)=-4$
2. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a) $\lim _{x \rightarrow 4^{-}} f(x)=+\boldsymbol{+ \infty}$
(b) $\lim _{x \rightarrow 4^{+}} f(x)=$ - $\boldsymbol{\infty}$
(c) $\lim _{x \rightarrow 4} f(x)=\mathbf{D} \mathbf{N E}$
(d) $f(4)=$ DNE
(e) $\lim _{x \rightarrow 8} f(x)=0$
(f) $f(8)=10$

Write the equation of any vertical asymptotes: $x=4$
3. Evaluate the limits below by graphing $f(x)=\left\{\begin{array}{ll}x+1 & x<0 \\ x-1 & 0 \leq x<2 \\ 1+\sqrt{x-2} & 2<x\end{array} \quad\right.$.
(a) $\lim _{x \rightarrow 0} f(x)=\mathbf{D N E}$
because the limit on left and the limit on right are different

$$
\begin{aligned}
\text { (b) } \lim _{x \rightarrow 2^{\prime}} f(x) & =1 \\
\lim _{x \rightarrow 2^{+}} f(x) & =1=\lim _{x \rightarrow 2^{-}} f(x) .
\end{aligned}
$$


(c) For which values $a$ does $\lim _{x \rightarrow a} f(x)$ exist? All real numbers except $x=0$.

