1. Use the graphs of $y=\sin x$ and $y=\cos x$ to sketch a graph of $y^{\prime}$.


2. Use what we learned in 4. and 5. above to find the derivative of:
(a) $y=3 x^{4} \cos (x)$

$$
\begin{aligned}
& \text { a) }) y=3 x^{2} \cos (x) \\
& y^{\prime}=12 x^{3} \cos x-3 x^{4} \sin x=3 x^{3}(4 \cos x-x \sin x)
\end{aligned}
$$

(b) $y=\tan (x)$ (Use the Quotient Rule.) $=\frac{\sin x}{\cos x}$

$$
y^{\prime}=\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
$$

3. Fill in the table below.

Derivatives of Trigonometric Functions:

- $\frac{d}{d x}(\sin x)=\cos X$
- $\frac{d}{d x}(\cos x)=-\sin \boldsymbol{x}$
- $\frac{d}{d x}(\tan x)=\sec ^{2} x$
- $\frac{d}{d x}(\csc x)=-\csc x \cot x$
- $\frac{d}{d x}(\sec x)=\frac{\sec x \tan x}{2}$
- $\frac{d}{d x}(\cot x)=$ $-\csc ^{2} x$

4. Find the derivative of $y=\frac{\sec x}{1-x \tan x}$.

$$
\begin{aligned}
y^{\prime} & \left.=\frac{(1-x \tan x)(\sec x \tan x)-(\sec x)\left[0-1 \cdot \tan x-x \sec ^{2} x\right]}{(1-x \tan x)^{2}}\right] \\
& =\frac{\sec x\left[\tan x(1-x \tan x)+\tan x+x \sec ^{2} x\right]}{(1-x \tan x)^{2}}
\end{aligned}
$$

5. If $f(\theta)=e^{\theta} \sin (\theta)$, find $f^{\prime \prime}(\theta)$. Simplify your answers here.

$$
\begin{aligned}
f^{\prime}(\theta) & =e^{\theta}(\cos \theta)+e^{\theta} \sin \theta=e^{\theta}(\cos \theta+\sin \theta) \\
f^{\prime \prime}(\theta) & =e^{\theta}(-\sin \theta+\cos \theta)+e^{\theta}(\cos \theta+\sin \theta) \\
& =2 e^{\theta} \cos \theta
\end{aligned}
$$

$$
\text { 6. Find } \begin{aligned}
\frac{d}{d t}[t \sin t \cos t] \cdot & =(t \sin t) \cdot \frac{d}{d t}[\cos t]+\frac{d}{d t}[t \sin t] \cdot \cos t \\
& =(t \sin t)(-\sin t)+(1 \cdot \sin t+t \cos t) \cos t \\
& =t\left(\cos ^{2} t-\sin ^{2} t\right)+\sin t \cos t
\end{aligned}
$$

7. An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled down 2 cm past its rest position and then released, it vibrates vertically. The equation of motion is

$$
s=2 \cos t+3 \sin t, \text { for } t \geq 0
$$

where $s$ is measured in centimeters and $t$ is measured in seconds. (We are taking the positive direction to be downward.)
(a) Find $s(0), s^{\prime}(0)$, and $s^{\prime \prime}(0)$ including units.

$$
\begin{array}{ll}
S(t)=2 \cos t+3 \sin t ; \quad & S(0)=2 \mathrm{~cm} \\
s^{\prime}(t)=-2 \sin t+3 \cos t ; \quad s^{\prime}(0)=3 \mathrm{~cm} / \mathrm{s} \\
s^{\prime \prime}(t)=-2 \cos t-3 \sin t ; \quad s^{\prime \prime}(0)=-2 \mathrm{~cm} / \mathrm{s}^{2}
\end{array}
$$

(b) What do the numbers from part (a) indicate about the mass in the context of the problem?

$S(0)$ confirms the mass is pulled $Z \mathrm{~cm}$ below resting $S^{\prime}(0)$ tells us the mass wasn't just "let go" but was released with downward velocity of $3 \mathrm{~cm} / \mathrm{s}$.
$S^{\prime \prime}$ confirms that the spring is pulling up on the mass, causing it to slow down.

