## Section 3.3 Derivatives of Trig Functions

1. Use the graphs of $y=\sin x$ and $y=\cos x$ to sketch a graph of $y^{\prime}$.


2. Use what we learned in 4. and 5. above to find the derivative of:
(a) $y=3 x^{4} \cos (x)$
(b) $y=\tan (x)$ (Use the Quotient Rule.)
3. Fill in the table below.

## Derivatives of Trigonometric Functions:

- $\frac{d}{d x}(\sin x)=$ $\qquad$ - $\frac{d}{d x}(\csc x)=$
- $\frac{d}{d x}(\cos x)=$ $\qquad$
- $\frac{d}{d x}(\tan x)=$ $\qquad$
- $\frac{d}{d x}(\sec x)=$
- $\frac{d}{d x}(\cot x)=$
$\qquad$
$\qquad$

4. Find the derivative of $y=\frac{\sec x}{1-x \tan x}$.
5. If $f(\theta)=e^{\theta} \sin (\theta)$, find $f^{\prime \prime}(\theta)$. Simplify your answers here.
6. Find $\frac{d}{d t}[t \sin t \cos t]$.
7. An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled down 2 cm past its rest position and then released, it vibrates vertically. The equation of motion is

$$
s=2 \cos t+3 \sin t, \text { for } t \geq 0
$$

where $s$ is measured in centimeters and $t$ is measured in seconds. (We are taking the positive direction to be downward.)
(a) Find $s(0), s^{\prime}(0)$, and $s^{\prime \prime}(0)$ including units.
(b) What do the numbers from part (a) indicate about the mass in the context of the problem?

