SECTION 3.5 IMPLICIT DIFFERENTIATION

1. Find $\frac{d y}{d x}$ for $2 x+3 y=x y-y^{2}$ and find the equations of tangents to the graph when $x=0$. Use the graph below as an aid and to determine the plausibility of your answers.

2. Find $\frac{d a}{d b}$ for $a^{3} \sin (3 b)=a^{2}-b^{2}$
3. Find $\frac{d y}{d x}$ for $e^{x y}=x+y+1$
4. You are going to derive the formula for the derivative of inverse tangent the way we found the derivative of inverse sine in class.
(a) Find $d y / d x$ for the expression $x=\tan (y)$.
(b) Use the identity $1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$ to rewrite you answer in part (a) and write your $d y / d x$ in terms of x only.
(c) Now fill in the blank $\frac{d}{d x}[\arctan (x)]=$
(d) Use your knowledge of the graph of $f(x)=\arctan (x)$ to decide if your answer seems plausible...
5. Find the derivative of $f(x)=x \arctan x$.
6. Find the derivative of $f(x)=\arctan \left(4-x^{2}\right)$.
