REVIEW DAY 4: INVERSE FUNCTION, EXPONENTIAL FUNCTIONS, & LOGARITHMIC FUNCTIONS

1. In your own words, explain what it means for $f^{-1}(x)$ to be the *inverse* of f(x)? You might try explaining it using graphs, algebra, or numerical calculations.

2. Without doing a bunch of algebra, find $f^{-1}(x)$ for each function below:

(a)
$$f(x) = 2x$$
 (b) $f(x) = x^3$

3. Without explicitly finding a formula for $f^{-1}(x)$, find $f^{-1}(1)$ for each function below:

(a)
$$f(x) = x - 20$$
 (b) $\begin{vmatrix} x & 0 & 0.25 & 0.5 & 0.75 & 1 & 1.25 & 1.5 & 1.75 & 2.0 \\ \hline f(x) & 20 & 10 & 5 & 3 & 2.5 & 2 & 1.5 & 1 & 0.25 \\ \end{vmatrix}$

4. Explain why the directions "Find $f^{-1}(1)$ " don't make sense for the following examples:

5. Give a not-too-big rough sketch of $f(x) = \sin x$ and ask yourself whether or not it makes since to be asked to find $\sin^{-1}(1)$. (Recall that $\sin^{-1}(1)$ could be written $\arcsin(1)$ or $\operatorname{invsin}(1)$.)

6. Evaluate the following:

(a) $\arcsin(1)$

(b) $\arccos(-\sqrt{3}/2)$

(c) arctan(1)

(d) arcsin(10)

Exponential Functions & Logarithms

7. On the axes below, sketch:

8. Find the exact value of each expression.

(a) log₂ 16

(b) $e^{\ln 5}$

9. Solve each equation below for x.

(a)
$$10 = 2e^{x+1}$$
 (b) $\ln(x^2 - 1) = 1$

10. Sketch each function. Include domain, range, intercepts and asymptotes.

