Review Day 4: Inverse Function, Exponential Functions, \& Logarithmic FUNCTIONS

1. In your own words, explain what it means for $f^{-1}(x)$ to be the inverse of $f(x)$? You might try explaining it using graphs, algebra, or numerical calculations.
2. Without doing a bunch of algebra, find $f^{-1}(x)$ for each function below:
(a) $f(x)=2 x$
(b) $f(x)=x^{3}$
3. Without explicitly finding a formula for $f^{-1}(x)$, find $f^{-1}(1)$ for each function below:
(a) $f(x)=x-20$

(b) | x | 0 | 0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | 1.75 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $f(x)$ | 20 | 10 | 5 | 3 | 2.5 | 2 | 1.5 | 1 | 0.25

4. Explain why the directions "Find $f^{-1}(1)$ " don't make sense for the following examples:
(a) $f(x)=x^{2}-3$
(b) $\begin{array}{c||c|c|c|c|c|c|c|c|c|}x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\$\cline { 2 - 6 } \& $\left.f(x) & -3 & 1 & 5 & 8 & 6 & 2 & 3 & 1\end{array}\right) 0$
5. Give a not-too-big rough sketch of $f(x)=\sin x$ and ask yourself whether or not it makes since to be asked to find $\sin ^{-1}(1)$. (Recall that $\sin ^{-1}(1)$ could be written $\arcsin (1)$ or invsin(1).)

6. Evaluate the following:
(a) $\arcsin (1)$
(b) $\arccos (-\sqrt{3} / 2)$
(c) $\arctan (1)$
(d) $\arcsin (10)$

Exponential Functions \& Logarithms

7. On the axes below, sketch:
(a) $y=e^{x}$ and $y=2^{x}$
(b) $y=\ln x$ and $y=\log _{2}(x)$

8. Find the exact value of each expression.
(a) $\log _{2} 16$
(b) $e^{\ln 5}$
9. Solve each equation below for x.
(a) $10=2 e^{x+1}$
(b) $\ln \left(x^{2}-1\right)=1$
10. Sketch each function. Include domain, range, intercepts and asymptotes.
(a) $f(x)=\ln (x+1)$
(b) $f(x)=-\ln x$

