SECTION 2-5 EXAMPLES

1. Sketch the graph of a function with a removable discontinuity at $x=2$, a jump discontinuity at $x=-2$ and that is continuous for all other real numbers.

2. Determine where the function $h(x)=\left\{\begin{array}{ll}\sin x & x<\pi \\ 0 & x=\pi \\ x+1-\pi & \pi<x\end{array}\right.$ is not continuous and justify your answer. Sketch the graph of the function.

f is not continuous at $x=\pi$ because the limit does not exist there. That is: $\lim f(x)=D N E$. $x \rightarrow \pi$
3. Use continuity to evaluate the limit $\lim _{x \rightarrow 10} \frac{x^{2}}{\sqrt{x-5}}=\frac{102}{\sqrt{10-5}}=\frac{100}{\sqrt{5}}$
4. Determine the value of c that will make $f(x)=\left\{\begin{array}{ll}c-x^{2} & x \leq 1 \\ 5 x-2 & x>1\end{array}\right.$ continuous everywhere.
at $x=1: \quad c-x^{2}=c-1$

$$
5 x-2=5-2=3
$$

We need $3=C-1$ or $C=4$.

Not if is already continuous for all $x \neq 1$ because $c-x^{2}$ is everywhere continuous and so is $5 x-2$.
5. Use the Intermediate Value Theorem to show that there is a root of the equation $5+2 x-x^{4}=0$ in the interval $(1,2)$. Justify your ahsurer.
Let $f(x)=5+2 x-x^{4}$.
Now, $f(1)=5+2-1=6$ and

$$
f(2)=5+4-16=-7 .
$$

Since $f(x)$ is continuous (it's a polynomial) and $f(1)>0$ and $f(2)<0, f(x)$ must be zero for some x in $(1,2)$.

