SECTION 2-5 EXAMPLES

1. Sketch the graph of a function with a removable discontinuity at x = 2, a jump discontinuity at x = -2 and that is continuous for all other real numbers.

4. Determine the value of *c* that will make $f(x) = \begin{cases} c - x^2 & x \le 1\\ 5x - 2 & x > 1 \end{cases}$ continuous everywhere.

at x=1:
$$C-x^2 = C-1$$

 $5x-2 = 5-2=3$
We need $3=C-1$ or $C=4$
 $=$.
We need $3=C-1$ or $C=4$
 $=$.
Notif is already continuous
for all $x \neq 1$ because
 $C-x^2$ is everywhere
 $continuous$ and so
 $is 5x-2$.

5. Use the Intermediate Value Theorem to show that there is a root of the equation $5 + 2x - x^4 = 0$ in the interval (1,2). Justify your answer.

Let
$$f(x) = 5 + 2x - x^4$$
.
Now, $f(i) = 5 + 2 - 1 = 6$ and
 $f(2) = 5 + 4 - 16 = -7$.
Since $f(x)$ is continuous (it's a polynomial) and
 $f(i) = 70$ and $f(2) < 0$, $f(x)$ must be
Zero for some x in $(1,2)$.