Section 2-7 $\quad P\left(a, 3 a^{2}\right), Q\left(a+h, 3(a+h)^{2}\right)$

1. Find the slope of the tangent line to $f(x)=3 x^{2}$ at $x=a$ by taking the limit of the slopes of secant lines. When you are done, check whether or not your solutions seems plausible!

$$
\begin{aligned}
& m_{\tan }=\lim _{h \rightarrow 0} m_{\text {sec }}=\lim _{h \rightarrow 0} \frac{3(a+h)^{2}-3 a^{2}}{(a+h)-(a)}=\lim _{h \rightarrow 0} \frac{3 a^{2}+6 a h+3 h^{2}-3 a^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 a h+3 h^{2}}{h}=\lim _{h \rightarrow 0} 6 a+3 h=6 a+3 \cdot 0=6 a
\end{aligned}
$$

plausible? When $a<0, m_{\tan }=6 a<0$

$$
\begin{aligned}
& a=0, m_{\tan }=6.0=0 \\
& a>0, m_{\tan }=6 a>0
\end{aligned}
$$

2. Write the equation of the line tangent to the graph of $f(x)=3 x^{2}$ at $x=\frac{1}{2}$.

$$
m_{\tan }=6 a
$$

when $x=\frac{1}{2}, m_{\tan }=6\left(\frac{1}{2}\right)=3$
point $\left(\frac{1}{2}, 3\left(\frac{1}{2}\right)^{2}\right)=\left(\frac{1}{2}, \frac{3}{4}\right)$
tangent: $y-\frac{3}{4}=3\left(x-\frac{1}{2}\right)$ or $y=3\left(x-\frac{1}{2}\right)+\frac{3}{4}$
3. The derivative of a function f at $x=a$ is $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} m_{\sec }$
4. Assume the tangent line to the graph of $y=f(x)$ at $x=\sqrt{2}$ is $y=\frac{4 x-1}{3}$. Determine:
(a) $f(\sqrt{2})=\frac{4 \sqrt{2}-1}{3}$ tangent line and $f(x)$ share a point at So $\frac{4(\sqrt{2})-1}{3} \leqslant$ pig $_{\text {into }} x=\sqrt{2}$ $x=\sqrt{2}$.
(b) $f^{\prime}(\sqrt{2})=\frac{4}{3} \leftarrow$ Pick off coeff. of x in line.

Slope of $f(x)$ is the same as slope of tangent line at $x=\sqrt{2}$.
5. The height in meters of an object is given by the function $s(t)=\frac{2}{t+1}$ where t is measured in seconds.
(a) Find $s^{\prime}(a)$ using the definition in \#3 on this sheet.
(b) Determine the units of $s^{\prime}(a)$.
(c) Find and interpret in the context of the problem the meaning of $s^{\prime}(1)$.
(a)

$$
\begin{aligned}
s^{\prime}(a)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2}{a+h+1}-\frac{2}{a+1}\right) & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2(a+1)-2(a+h+1)}{(a+h+1)(a+1)}\right) \\
=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2 a+2-2 a-2 h-2}{(a+h+1)(a+1)}\right) & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-2 h}{(a+h+1)(a+1)}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{-2}{(a+h+1)(a+1)}\right)=\frac{-2}{(a+1)^{2}}
\end{aligned}
$$

(b) units of $s^{\prime}=\frac{u n i t s}{\text { units oft }}=\mathrm{m} / \mathrm{sec}$
(c) $s^{\prime}(l)=\frac{-2}{(1+1)^{2}}=\frac{-2}{4}=\frac{-1}{2} \mathrm{~m} / \mathrm{s}$. At the instant 1 second has passed, the height of the object is decreasing at a rate of $-1 / 2 \mathrm{~m} / \mathrm{s}$.
6. Let $f(x)=\sqrt{90-x}$
(a) Find $f^{\prime}(a)$ using the definition in \# 3 on this sheet.
(b) If f is measured in degrees celsius and x is measured in minutes, determine the units of $f^{\prime}(a)$.
(a)

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{\sqrt{90-(a+h)}-\sqrt{90-a}}{h} \cdot \frac{(\sqrt{90-(a+h)}+\sqrt{90-a})}{(\sqrt{90-(a+h)}+\sqrt{90-a})}=\lim _{h \rightarrow 0} \frac{90-(a+h)-(90-a)}{h(\sqrt{90-(a+h)}+\sqrt{90-a})} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(\sqrt{90-(a+h)}+\sqrt{90-a})}=\lim _{h \rightarrow 0} \frac{-1}{\sqrt{90-(a+h)}+\sqrt{90-a}}=\frac{-1}{2 \sqrt{90-a}}
\end{aligned}
$$

$\begin{aligned} & \text { (b) units of } \\ & f^{\prime}(a)\end{aligned}=\frac{\text { units of } f(x)}{\text { units of } x}=\frac{\text { degrees Celsius }}{\text { minutes }}={ }^{\circ} \mathrm{C} / \mathrm{min}$
(C) $s^{\prime}(0)=\frac{-1}{2 \sqrt{90}}=\frac{-1}{6 \sqrt{10}} \circ / \mathrm{min}$. When time starts, the temperature is decreasing at a rate of $-1 / 6 \sqrt{10}$ degrees celsks per minute.
UAF Calculus ${ }^{1}$ Bonus: Find +

