Section 2-2: The Limit of a Function

Read Section 2.2. Work the embedded problems.

1. EXAMPLE 1: What does the function $f(x)=\frac{x-2}{x^{2}-x-2}$ look like around $x=2$?
2. EXAMPLE 2: What does the function $f(x)=\frac{2|x-5|}{(x-5)}$ look like around $x=5$?
3. DEFINITION: two-sided limit

Say: "the limit of $f(x)$, as x approaches a is $L^{\prime \prime}$

Write:

It means:
4. DEFINITION: one-sided limits

- Say: "the limit of $f(x)$, as x approaches a on the left is L "

Write:

It means:

- Say: "the limit of $f(x)$, as x approaches a on the right is L "

Write:

It means:
5. EXAMPLE 3: What does the function $f(x)=\frac{8-x}{(x-2)^{2}}$ look like around $x=2$?
6. DEFINITION: infinite limits
7. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a)
$\lim _{x \rightarrow 4^{-}} f(x)=$ \qquad
(b)
$\lim _{x \rightarrow 4^{+}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow 4} f(x)=$ \qquad
(d) $f(4)=$ \qquad
(e) $\lim _{x \rightarrow 8} f(x)=$ \qquad
(f) $f(8)=$ \qquad
8. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a)
$\lim _{x \rightarrow 4^{-}} f(x)=$ \qquad
(b)
$\lim _{x \rightarrow 4^{+}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow 4} f(x)=$ \qquad
(d) $f(4)=$ \qquad
(e) $\lim _{x \rightarrow 8} f(x)=$ \qquad
(f) $f(8)=$ \qquad

Write the equation of any vertical asymptote:
9. What is the relationship between limits and vertical asymptoes?
10. Sketch the graph of an function that satisfies all of the given conditions.

$$
\begin{array}{lll}
\lim _{x \rightarrow 0^{-}} f(x)=1 & \lim _{x \rightarrow 0^{+}} f(x)=-2 & \lim _{x \rightarrow 4^{-}} f(x)=3 \\
\lim _{x \rightarrow 4^{+}} f(x)=0 & f(0)=-2 & f(4)=1
\end{array}
$$

11. Some General Principles

(a) $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=$
(d) $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=$
(g) $\lim _{x \rightarrow a^{-}} \frac{1}{x-a}=$
(b) $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=$
(e) $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=$
(h) $\lim _{x \rightarrow a^{+}} \frac{1}{x-a}=$
(c) $\lim _{x \rightarrow 0} \frac{1}{x}=$
(f) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=$
(i) $\lim _{x \rightarrow a} \frac{1}{x-a}=$

