SECTION 2-4: CONTINUITY

Read Section 2.4. Work the embedded problems.

1. Determine the point(s), if any, at which each function is discontinuous. Classify any discontinuity as jump, removable, infinite, or other.
(a) $g(x)=x^{-1}+1$
(b) $h(x)=\frac{x+2}{x^{2}-4}$
(c) $f(\theta)=\tan (\theta)$
2. Find the value(s) of k that makes the function continuous over the given interval.
$f(x)= \begin{cases}e^{k x} & \text { if } 0 \leq x<4 \\ 2 x+1 & \text { if } 4 \leq x \leq 10\end{cases}$
3. Use the Intermediate Value Theorem to show that the equation $x^{4}+x-3=0$ must have a solution in the interval from $x=1$ to $x=2$.
4. Sketch the graph of a function $f(x)$ with the following properties:
(a) the domain of $f(x)$ is the interval $[0,10]$.
(b) $f(x)$ is continuous except at $x=0$ and $x=5$.
