SECTION 3-1: DEFINING THE DERIVATIVE

Read Section 3.1. Work the embedded problems.

1. Definition of the Derivative (version 1) -F )
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2. Definition of the Derivative (version 2)
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3. In the problems below, let f(z) = =.
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(a) Using a rough sketch of f(z) make a rough estimate of the slope of the tangent to f(z) when

r=—2.
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(b) Using the first version of the difference quotient, find myan Wh A= ’2
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(c) Using the second version of the difference quotient, find man
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d) Write the eiuatlon of the line tangent to f(z) when z = —2. (Plausible?)
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4. Graph the function G(t) = .
2r—-5 1<z
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(a) Use the graph to determine G'(—1) and G’ (4

o G/N=0
o G(9)=2

(b) Explain — using the definition — why G’(1) fails to exist.

The dilinitish is a +wo-sided limit. But we can
See +Hhukothe right, all se cant lines have aslope of 2

bud on +he Lt , all seant lines hare a slpeof D.

5. Arockis dropped from a height of 100 feet. Its height above ground at time ¢ seconds later is given
by s(t) = —16t% + 100.

(a) Find and interpret s(0) and s(1). SJ‘"’[SI HJ mk S Wc/
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