Read Section 3.3. Work the embedded problems.

1. Review (aka mini-quiz)
(a) Fill in the following rules - from memory if possible!
i. $\frac{d}{d x}[f(x) g(x)]=$
ii. $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=$
(b) Find the derivative of each of the following. Use whatever rule you choose. Simplify if you have time.
i. $H(x)=\frac{1}{3 x}\left(8+x^{2}\right)$
ii. $G(x)=\frac{3 x}{8+x^{2}}$
2. Determine the point (or points) where the graph $f(x)=x^{3}$ has a slope of 2 . Write the equation of the tangent line at this point (or points). On the same axes, sketch $f(x)$ and the tangent line(s).
3. The concentration of an antibiotic in the bloodstream t hours after being injected is given by $C(t)=\frac{2 t^{2}+t}{t^{3}+50}$ where C is measured in milligrams per liter of blood.
(a) Find $C(0)$ and $C(10)$ and explain (in complete sentences, including units) what these numbers mean in the context of the problem.
(b) Find $C^{\prime}(t)$. (Yes. This will be challenging/painful. I put the simplified answer at the bottom of this page so you can check your answer!)
(c) It is the case that $C^{\prime}(0)=0.02$ and $C^{\prime}(10)=-0.018$. Explain (in a complete sentence or sentences) what these numbers mean. Include units.
(d) Briefly describe what seems to be occurring as the number of hours increases.
4. An ant walking along a sidewalk has traveled $s(t)=t^{4}-2 t^{2}$ inches in t minutes. Find the acceleration of the ant (with units) when the velocity of the ant is 0 .
5. Bonus Problem: Find the point on the graph of $f(x)=x^{3}$ such that the tangent line at that point has an y intercept of 6 .

$$
C^{\prime}(t)=\frac{-2\left(t^{4}+t^{3}-100 t-25\right)}{\left(t^{3}+50\right)^{2}}
$$

