Read Section 3.2. Work the embedded problems.

1. Fill in the following rules:
(a) $\frac{d}{d x}[c]=$ 0
(c) $\frac{d}{d x}[c f(x)]=c f^{\prime}(x)$
(b) $\frac{d}{d x}\left[x^{n}\right]=\boldsymbol{n} \boldsymbol{X}^{\boldsymbol{n}-\boldsymbol{1}}$
(d) $\frac{d}{d x}[f(x) \mp g(x)]=f^{\prime}(x)+g^{\prime}(x)$
2. Apply the rules to find the derivative of:
(a) $f(x)=e^{3} \quad f^{\prime}(\boldsymbol{x})=0$
(c) $H(x)=4 x^{1 / 2} \quad H^{\prime}(x)=4 \cdot \frac{1}{2} x^{-1 / 2}=2 x^{-1 / 2}$
(b) $f(x)=x^{-4} \quad f^{\prime}(x)=-4 x^{-5}$
(d) $j(x)=\frac{\sqrt{2}}{2}+x-x^{2.3}$
3. Fill in the following rules:

$$
\text { (a) } \frac{d}{d x}[f(x) g(x)]=\boldsymbol{f}^{\prime} \cdot \boldsymbol{g}+\boldsymbol{f} \cdot \boldsymbol{g}^{\prime}
$$

(b) $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{\boldsymbol{g} \cdot \boldsymbol{f}^{\prime}-f \cdot \boldsymbol{g}^{\prime}}{\boldsymbol{g}^{2}}$
4. Find the derivative of each of the following:
(a) $H(x)=\left(3 x^{2}+1\right)\left(\frac{1}{x}+x\right)=\left(3 x^{2}+1\right)\left(\bar{X}^{-1}+X\right)$

$$
\begin{aligned}
H^{\prime}(x) & =(6 x)\left(\frac{1}{x}+x\right)+\left(3 x^{2}+1\right)\left(-x^{2}+1\right) \\
& =6+6 x^{2}-3+3 x^{2}-x^{-2}+1 \\
& =9 x^{2}-x^{-2}+4
\end{aligned}
$$

(b) $G(x)=\frac{x^{2}}{x^{2}+1}$

$$
G^{\prime}(x)=\frac{\left(x^{2}+1\right)(2 x)-x^{2}(2 x)}{\left(x^{2}+1\right)^{2}}
$$

$$
\left.f^{\prime}(x), y^{\prime}, y^{\prime}(x), \frac{d y}{d x}, \frac{d f}{d x}\right) \frac{d}{d x}[f(x)]
$$

6. Higher order derivatives

Example: $y=x^{3}-2 \sqrt{x}+\pi=x^{3}-2 x^{1 / 2}+\pi$

$$
\begin{gathered}
\text { ale } y=x^{3}-2 \sqrt{\sqrt{x}}+\pi=x^{2}-2 x^{2}+\pi \\
y^{\prime}=3 x^{2}-x^{-1 / 2}+0 \\
y^{\prime \prime}=6 x+\frac{1}{2} x^{-3 / 2} \\
y^{\prime \prime \prime}=6-\frac{3}{4} x^{-5 / 2}
\end{gathered} \quad y^{(4)}=\frac{+15}{8} x^{-7 / 2}
$$

s.feet t-seconds
7. The vertical height of an object is given by $s(t)=-16 t^{2}+20 t+100$. Find $s^{\prime}(t)$ and $s^{\prime \prime}(t)$. Include units.
$s^{\prime}(t)=-32 t+20$ units: $\mathrm{ft} / \mathrm{sec}$
$s^{\prime \prime}(t)=-32$ units $\mathrm{ft} / \mathrm{sec} / \mathrm{sec}=\mathrm{ft} / \mathrm{s}^{2}$
$s^{\prime}=v=$ velocity
$s^{\prime \prime}=v^{\prime}=a=$ acceleration

