Read Section 3.4. Work the embedded problems.

1. A potato is launched vertically upward from a platform 20 feet off the ground. The distance in feet that the potato travels from the ground after t seconds is given by $s(t)=-16 t^{2}+64 t+20$.
(a) Find the initial velocity of the potato.

$$
V(t)=S^{\prime}(t)=-32 t+64 ;
$$

Initial velocity is when $t=0$:

$$
V(0)=64 \mathrm{ft} / \mathrm{sec}
$$

(b) Find the velocity and the acceleration of the potato when $t=3$.

$$
\begin{aligned}
& \begin{array}{r}
32 \\
-96 \\
-96 \\
+ \\
+64 \\
-32
\end{array} a(3)=-32(3)+64=-32 \mathrm{ft} / \mathrm{sec} \\
& \text { (c) Is the potato speeding up or slowing down? Why? }
\end{aligned}
$$

The potato is speeding up be cause $a(3)$ and

2
16
64
128
28
148

(d) What is the velocity of the potato when it reaches its maximum height and why?

At maximum height $v(t)=0$ because the potato stops going up (pos.vel) and starts going down (neg.vel.) So it's zero.
(e) What is the maximum height of the potato?
$\frac{-64}{84}$ set $v=0$ to find $t: 0=-32 t+64$. So $t=2$.

$$
S(2)=-16 \cdot 4+64 \cdot 2+20=84 \mathrm{ft} .
$$

(f) Assume the potato lands on the ground (not the platform). How long is the potato in the air?

Find t when $s=0$.

$$
0=-16 t^{2}+64 t+20
$$

$$
t=\frac{-64 \pm \sqrt{64^{2}-4(-16)(20}}{2(-16)} \approx 4.2913 \mathrm{~s}
$$

(g) What is the velocity of the potato when it hits the ground?

$$
V(4.2913)=-32(4.2913)+64=-73.32 \mathrm{ft} / \mathrm{s}
$$

(h) You should have observed in part (b) that the acceleration is constant. What does this number represent?
It is the acceleration due to gravity on earth.

