SECTION 3-5: DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Read Section 3.5. Work the embedded problems.

- 1. Find the derivative of $f(x) = \frac{1}{3}x^3 \frac{x}{3} + \frac{\pi^2}{3}$. (What's wrong with the answer below?) answer: $f(x) = \frac{1}{3}x^3 - \frac{x}{3} + \frac{\pi^2}{3} = \frac{1}{3}\left(x^3 - x + \pi^2\right) = \frac{1}{3}(3x^2 - 1) = f'(x)$
- 2. (Good review for Midterm) The graph of f(x) is sketched below. Graph its derivative f'(x). Then, use your graph of f'(x) to graph the derivative of f''(x).

$$\frac{d}{dx} \left[\sin(x) \right] = \cos(x)$$

$$\frac{d}{dx} \left[\cos(x) \right] = -\sin(x)$$

$$\frac{d}{dx} \left[\tan(x) \right] = \sec^{2}(x)$$

$$\frac{d}{dx} \left[\sec(x) \right] = \left(\sec(x) \right) \left(\tan(x) \right)$$

$$\frac{d}{dx} \left[\cot(x) \right] = -\csc^{2}(x)$$

$$\frac{d}{dx} \left[\csc(x) \right] = -\cot(x)\csc(x)$$

(a)
$$y = x^2 + 5\sin(x)$$

$$y'=2x+5\cos(x)$$

(b)
$$f(\theta) = \theta \cos(\theta)$$

$$f'(x) = 1 \cdot \cos(\theta) + \Theta(-\sin(\theta))$$
$$= \cos(\theta) - \Theta \sin(\theta)$$

(c)
$$g(x) = \frac{\sin(x)}{x+1}$$

$$g'(x) = \frac{(x+1)(\cos(x)) - (\sin(x))(1)}{(x+1)^2} = \frac{(x+1)\cos(x) - \sin(x)}{(x+1)^2}$$

(d)
$$H(x) = \frac{\sin(x)}{\cos(x)}$$

$$H'(x) = \frac{\cos(x)(\cos(x)) - (\sin(x))(-\sin(x))}{(\cos(x))^2} = \frac{\cos^2x + \sin^2x}{\cos^2x} = \frac{1}{\cos^2x} = \sec^2x$$

4. A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is $x(t) = 8\sin(t)$, where t is in seconds and x is in centimeters.

(a) Find the velocity and acceleration at time
$$t$$
.

(a) Find the velocity and acceleration at time t.

$$x(t) = 8 \sin(t)$$

$$x'(t) = V(t) = 8 \cos(t)$$

(b) Find the position, velocity, and acceleration of the mass at time $t=2\pi/3$. In what direction is

it moving at this time? Is it speeding up or slowing down?
$$\times (27) = 8 \sin(27) = 415 \text{ cm}$$

$$V = \chi'(2\pi/3) = 8\cos(2\pi/3) = -4 \text{ cm/s}$$

$$R = \chi''(\frac{37}{3}) = -8(\frac{13}{2}) = -415 \text{ cm/s/s}$$

· Vanda have same sign. So mass is More Derivatives

•
$$f(x) = x^2 \tan(x) + 77$$

 $f'(x) = 2x \tan(x) + x^2 \cdot \sec^2 x + 0$
 $= 2x \tan(x) + x^2 \sec^2 x$

•
$$y = \sin x$$

 $y' = \cos(x) = y' = y'' = ...$
 $y'' = -\sin(x)$
 $y''' = -\cos(x)$
 $y''' = -\cos(x)$
 $y''' = -\sin(x) = y''' = y'' = ...$

$$f(x) = \frac{x}{\sec(x)} = x \cos(x)$$
rewrite of cosine cos

$$f'(x) = \frac{1 \cdot \sec(x) - x \cdot \sec(x) + a \cdot x(x)}{\sec(x)}$$

$$= \frac{1 - x + an(x)}{\sec(x)}$$

$$= \frac{1 - x + an(x)}{\cos(x)}$$

$$= \frac{1 - x + an(x)}{\cos(x)}$$