Section 3-5: Derivatives of Trigonometric Functions

Read Section 3.5. Work the embedded problems.

1. Find the derivative of $f(x)=\frac{1}{3} x^{3}-\frac{x}{3}+\frac{\pi^{2}}{3}$. (What's wrong with the answer below?)
answer: $f(x)=\frac{1}{3} x^{3}-\frac{x}{3}+\frac{\pi^{2}}{3}=\frac{1}{3}\left(x^{3}-x+\pi^{2}\right)=\frac{1}{3}\left(3 x^{2}-1\right)=f^{\prime}(x)$
2. (Good review for Midterm) The graph of $f(x)$ is sketched below. Graph its derivative $f^{\prime}(x)$. Then, use your graph of $f^{\prime}(x)$ to graph the derivative of $f^{\prime \prime}(x)$.

3. Find the derivative.
(a) $y=x^{2}+5 \sin (x)$
(b) $f(\theta)=\theta \cos (\theta)$
(c) $g(x)=\frac{\sin (x)}{x+1}$
(d) $H(x)=\frac{\sin (x)}{\cos (x)}$
4. A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is $x(t)=8 \sin (t)$, where t is in seconds and x is in centimeters.
(a) Find the velocity and acceleration at time t.
(b) Find the position, velocity, and acceleration of the mass at time $t=2 \pi / 3$. In what direction is it moving at this time? Is it speeding up or slowing down?
