Read Section 3.5. Work the embedded problems.

1. Find the derivative of $f(x) = \frac{1}{3}x^3 - \frac{x}{3} + \frac{\pi^2}{3}$. (What's wrong with the answer below?)

answer: $f(x) = \frac{1}{3}x^3 - \frac{x}{3} + \frac{\pi^2}{3} = \frac{1}{3}(x^3 - x + \pi^2) = \frac{1}{3}(3x^2 - 1) = f'(x)$

2. (Good review for Midterm) The graph of f(x) is sketched below. Graph its derivative f'(x). Then, use your graph of f'(x) to graph the derivative of f''(x).

3. Find the derivative.

(a)
$$y = x^2 + 5\sin(x)$$

(b) $f(\theta) = \theta \cos(\theta)$

(c)
$$g(x) = \frac{\sin(x)}{x+1}$$

(d)
$$H(x) = \frac{\sin(x)}{\cos(x)}$$

- 4. A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is $x(t) = 8\sin(t)$, where *t* is in seconds and *x* is in centimeters.
 - (a) Find the velocity and acceleration at time *t*.

(b) Find the position, velocity, and acceleration of the mass at time $t = 2\pi/3$. In what direction is it moving at this time? Is it speeding up or slowing down?