1. Recall Two Versions of the Chain Rule
2. Understanding what the "formulas" in the book are trying to communicate:
3. $h(x)=\frac{2 x(2 x+1)^{5}}{\cos (2 x+1)}$
4. Find all x-values where the tangent to $f(x)=\left(x^{2}-4\right)^{3}$ is horizontal.
5. Use the table below to evaluate the derivatives of the given functions at the indicated vaue.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-1	2	-1	0	1
0	1	2	3	4
1	-1	-2	-3	-4
2	0	4	3	2

(a) $h(x)=f(g(x)-2 x)$ at $a=2$.
(b) $k(x)=\left(\frac{f(x)}{g\left(x^{2}\right)}\right)^{2}$ at $a=1$

