1. Goal: Understand and use the rule below:
2. Fill out the rows of the chart below. Start with asterisked rows.
(a) $f(x)=x^{3}$

	$f(x)$	$f^{\prime}(x)$	a-value	$b=f(a)$	$f^{\prime}(a)$	point: (a, b)	slope at (a, b)
	$f(x)=x^{3}$		2				
	$f^{-1}(x)$	$\left(f^{\prime}\right)^{-1}(x)$	b-value	$a=f^{-1}(b)$	$\left(f^{-1}\right)^{\prime}(b)$	point: (b, a)	slope at (b, a)

(b) $f(x)=\sin (x)$

	$f(x)$	$f^{\prime}(x)$	a-value	$b=f(a)$	$f^{\prime}(a)$	point: (a, b)	slope at (a, b)
	$f(x)=\sin (x)$						

3. Use the rule from (1) to find a formula for the derivative of $g(x)=\sin ^{-1}(x)$.
4. Rules for the arccosine and arctangent functions.
5. Find the derivatives for each function below.
(a) $f(x)=\cos ^{-1}(\sqrt{x})$
(b) $f(x)=\left(\tan ^{-1}(x)\right)^{2}$
(c) $f(x)=x \sin ^{-1}(x)$
(d) $f(x)=\tan ^{-1}\left(\frac{1}{x}\right)$
