1. Goal: Understand and use the rule below:

2. Fill out the rows of the chart below. Start with asterisked rows.

(a) $f(x) = x^3$

	f(x)	f'(x)	<i>a</i> -value	b = f(a)	f'(a)	point: (a, b)	slope at (a, b)
*	$f(x) = x^3$		2				
	$f^{-1}(x)$	$(f')^{-1}(x)$	<i>b</i> -value	$a = f^{-1}(b)$	$(f^{-1})'(b)$	point: (b, a)	slope at (b, a)

	f(x)	f'(x)	<i>a</i> -value	b = f(a)	f'(a)	point: (a,b)	slope at (a,b)
*	$f(x) = \sin(x)$						
	a 1 ()	(at) = 1	7 1	(-1)	(c-1)I(1)	point:	slope at
	$f^{-1}(x)$	$(f')^{-1}(x)$	b-value	$a = f^{-1}(b)$	$(f^{-1})'(b)$	(b,a)	(b,a)

3. Use the rule from (1) to find a formula for the derivative of $g(x) = \sin^{-1}(x)$.

4. Rules for the arccosine and arctangent functions.

5. Find the derivatives for each function below.

(a)
$$f(x) = \cos^{-1}(\sqrt{x})$$

(b)
$$f(x) = (\tan^{-1}(x))^2$$

- (c) $f(x) = x \sin^{-1}(x)$
- (d) $f(x) = \tan^{-1}(\frac{1}{x})$