A strategy.

- Draw a picture.
- Identify what you want and what you know
- Take derivative with respect to t.
- Solve for what you want.

1. Water runs into a conical tank at the rate of $9 \mathrm{ft}^{3} / \mathrm{min}$. The tank stands point down and has a height of 10 ft and a base radius of 5 ft . How fast is the water level rising when the water is 6 ft deep?

$$
\begin{aligned}
& \text { want } \frac{d h}{d t} \text { when } h=6 f t \text {. } \\
& \text { know } \frac{d v}{d t}=9 f^{3} / \min \\
& V=\frac{\pi}{3} r^{2} h=\frac{\pi}{3}\left(\frac{1}{2} h\right)^{2} h
\end{aligned}
$$

Use similar A's

$$
\text { So } v=\frac{\pi}{12} h^{3}
$$

$$
\begin{aligned}
& \frac{r}{h}=\frac{5}{10} \text { or } \\
& r=\frac{1}{2} h
\end{aligned}
$$

$$
\frac{d v}{d t}=\frac{\pi}{12} \cdot 3 h^{2} \cdot \frac{d h}{d t}
$$

$$
q=\frac{\pi}{4}(6)^{2} \cdot \frac{d h}{d t}
$$

$$
\text { or } \frac{d h}{d t}=\frac{9.4}{36 \pi}=\frac{1}{\pi} \mathrm{ft} / \mathrm{min}
$$

2. A street light is mounted at the top of a 10 - ft -tall pole. A woman 5 ft tall walks away from the pole along a straight path at a speed of $5 \mathrm{ft} / \mathrm{s}$. How fast is the tip of her shadow moving when she is 40 ft from the pole?

$$
\begin{gathered}
y=z-x \\
\frac{z-x}{5}=\frac{z}{10} \\
\text { or } \\
10 z-10 x=5 z
\end{gathered}
$$

i want $\frac{d z}{d t}$ when $z=40$
1 know $\frac{d x}{d t}=5 \mathrm{ft} / \mathrm{s}$
3. A hot air balloon rising straight up from a level field is tracked by a range finder 500 feet from the lift-off point. At the moment the range finder's elevation angle is $\pi / 4$, the angle is increasing at the rate of 0.14 radians $/ \mathrm{min}$. How fast is the balloon rising at that moment?

Want $\frac{d h}{d t}$ when $\theta=$
and $\frac{d \theta}{d t}=0.14 \mathrm{rad} / \mathrm{min}$. range
finder

$$
\tan \theta=\frac{h}{500}
$$

$$
\begin{aligned}
& \frac{d h}{d t}=500 \sec ^{2} \theta \\
& \sec \left(\frac{\pi}{4}\right)=\frac{1}{\cos (\pi / 4)} \\
& =\frac{1}{\sqrt{2} / 2}=\frac{2}{\sqrt{2}}=\sqrt{2}
\end{aligned}
$$

$$
\left(\sec ^{2} \theta\right) \cdot \frac{d \theta}{d t}=\frac{1}{500} \frac{d h}{d t}
$$

$$
\frac{d h}{d t}=500 \sec ^{2} \theta \frac{d t}{d t}=500 \sec ^{2}\left(\frac{\pi}{4}\right)(0.14)=(500)(0.14)(\sqrt{2})^{2}
$$

$$
=140 \mathrm{ft} / \mathrm{min}
$$

