Section 4.10 Antiderivatives

- (families of) antiderivatives
- definite integrals
- initial value problems

1. Find the (family of) antiderivatives for the following.
(a) $f(x)=x^{3}$
(b) $f(x)=5 \sin (x)$
(c) $f(x)=\frac{e^{x}}{4}$
(d) $f(x)=\sqrt{2}$
(e) $f(x)=\frac{1}{x}$
(f) $f(x)=1-x+e^{x}$
2. Confirm that $F(x)=\sin ^{2}(2 x)$ is an antiderivative of $f(x)=4 \sin (2 x) \cos (2 x)$.

Function	Antiderivative
$x^{k}(k \neq-1)$	
x^{-1} for all x	
1	
$\sin (x)$	
$\cos (x)$	

Function	Antiderivative
e^{x}	
$1 /\left(1+x^{2}\right)$	
$\sec ^{2}(x)$	
$\sec (x) \tan (x)$	
$1 / \sqrt{1-x^{2}}$	

3. Evaluate the integrals.
(a) $\int\left(e^{-x}+\sec ^{2}(x)\right) d x$
(b) $\int \frac{x^{2}+x^{1 / 2}+1}{x^{1 / 2}} d x$
(c) $\int\left(\frac{1}{4} x^{4}+\sec (x / \pi) \tan (x / \pi)\right) d x$
4. Solve the initial value problem if $f^{\prime}(x)=x+e^{x}$ and $f(0)=4$.
5. A particle moving along the x-axis has acceleration $a(t)=10 \sin (t)$ measured in $\mathrm{cm} / \mathrm{s}^{2}$. Assume the particle as initial velocity $v(0)=0$ and initial position $s(0)=0$, find a function that models its velocity, $v(t)$, and its position $s(t)$.
