Section 5.3: The Fundamental Theorem of Calculus

1. Let $f(x)$ be given by the graph below and define $A(x)=\int_{0}^{x} f(t) d t$.

(a) Compute the following using the graph of $f(x)$. Then sketch $A(x)$.
$f(0)=$ \qquad $f(5)=$ \qquad $A(0)=$ \qquad $A(5)=$ \qquad
$f(1)=$ \qquad $f(6)=$ \qquad $A(1)=$ \qquad $A(6)=$ \qquad
$f(2)=$ \qquad $f(7)=$ \qquad $A(2)=$ \qquad $A(7)=$ \qquad
$f(8)=$ \qquad $A(3)=$ \qquad $A(8)=$ \qquad
$f(4)=$ \qquad $f(9)=$ \qquad $A(4)=$ \qquad $A(9)=$ \qquad
(b) Where is $A(x)$ increasing? \qquad
(c) Describe f when $A(x)$ is increasing. \qquad
(d) Where is $A(x)$ decreasing? \qquad
(e) Describe f when $A(x)$ is decreasing. \qquad
(f) Where does $A(x)$ have a local maximum? \qquad
(g) Describe f when $A(x)$ has a local max. \qquad
(h) Where does $A(x)$ have a local minimum? \qquad
(i) Describe f when $A(x)$ has a local min.
(j) What can you say about the rate of change of $A(x)$?
2. Find the derivative of each function below.
(a) $g(x)=\int_{2}^{x}\left(t^{2}-\tan (t)\right) d t$
(b) $h(x)=\int_{0}^{\sin (x)} \sqrt{t^{3}+1} d t$
3. The Fundamental Theorem of Calculus (part 2):
4. Evaluate the integrals.
(a) $g(x)=\int_{0}^{\pi} \sin (x) d x$
(b) $h(x)=\int_{-1}^{3} x+e^{x} d x$
