SECTION 5.3: THE FUNDAMENTAL THEOREM OF CALCULUS

1. Let f(x) be given by the graph below and define $A(x) = \int_0^x f(t)dt$.

- f(2) = _____ f(7) = _____ A(2) = ____ A(7) = _____ f(3) = _____ f(8) = _____ A(3) = _____ A(8) = _____
- f(4) =_____ f(9) =_____ A(4) =_____ A(9) =_____

(j) What can you say about the **rate of change** of A(x)?

1

2. The Fundamental Theorem of Calculus (part 1):

3. Find the derivative of each function below.

(a)
$$g(x) = \int_{2}^{x} (t^{2} - \tan(t)) dt$$
 (b) $h(x) = \int_{0}^{\sin(x)} \sqrt{t^{3} + 1} dt$

4. The Fundamental Theorem of Calculus (part 2):

5. Evaluate the integrals.

(a)
$$g(x) = \int_0^\pi \sin(x) \, dx$$
 (b) $h(x) = \int_{-1}^3 x + e^x \, dx$