
THE END OF CHAPTER 3 AND THE START OF CHAPTER 4

1. (A quick refresher from Monday.) Find the derivatives of the functions below.

(a) y = e2 + esin(cx) where c is a constant.

(b) y = x3 sin(10x)

(c) w(r) = ln(tan�1(r))

(d) f(x) = xln(x) Hint: Use logarithmic differentiation (which means to start by taking the natural
log of both sides of the equation.)

2. Compare f 0(x)/f(x) and f50(x) for f(x) = P0ekt, f(x) = x2 and f(x) = x10.
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3. Chapter 4 is about applications of the derivative. Section 4.1 is about Related Rate Problems.
Example: A 15-ft ladder is leaning against a wall. The top of the ladder slides down the wall.
Assume that the ladder is rigid and does not shorten or lengthen as it slides. Draw a picture. Label
with variables the lengths that are changing over time. Label with constants that things that are
fixed. Which variables do you expect to have a positive derivative with respect to time? Negative?
Zero? What equations can you think of that related some of the variables in your picture?
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4. A list of derivative rules you will need to know how and when to use.

(a)
d

dx
[f(x)g(x)] =

(b)
d

dx


f(x)

g(x)

�
=

(c)
d

dx
[f(g(x))] =

(d)
d

dx
[sin(x)] =

(e)
d

dx
[cos(x)] =

(f)
d

dx
[tan(x)] =

(g)
d

dx
[sec(x)] =

(h)
d

dx
[cot(x)] =

(i)
d

dx
[csc(x)] =

(j)
d

dx

⇥
sin�1(x)

⇤
=

(k)
d

dx

⇥
cos�1(x)

⇤
=

(l)
d

dx

⇥
tan�1(x)

⇤
=

(m)
d

dx
[ex] =

(n)
d

dx
[ax] =

(o)
d

dx
[ln(x)] =

(p)
d

dx
[loga(x)] =
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