1. (A quick refresher from Monday.) Find the derivatives of the functions below.
(a) $y=e^{2}+e^{\sin (c x)}$ where c is a constant.

$$
\begin{aligned}
& \begin{aligned}
& \frac{d y}{d x}=0+e^{\sin (c x)} \cdot \frac{d}{d x}(\sin (c x))=e^{\sin (c x)} \cdot(\cos (c x)) \cdot(c) \\
&=c(\cos (c x)) e^{\sin (c x))} \\
& \text { (b) } y=x^{3} \sin \left(10^{x}\right) \\
& \text { productrule +chain rule } \quad \frac{d}{d x}\left[10^{x}\right]=\ln (10) \cdot 10^{x}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (b) } y=x^{3} \sin \left(10^{x}\right) \\
\text { productrule chain rule } \quad \frac{d}{d x}[10 \\
y^{\prime}
\end{array} \\
&=3 x^{2} \sin \left(10^{x}\right)+x^{3} \cdot \cos \left(10^{x}\right) \cdot \ln (10) \cdot 10^{x} \\
&=3 x^{2} \sin \left(10^{x}\right)+\ln (10) 10^{x} x^{3} \cos \left(10^{x}\right)
\end{aligned}
$$

will need chain rule
(c) $w(r)=\ln \left(\tan ^{-1}(r)\right)$

$$
\begin{aligned}
& w^{\prime}(r)=\frac{1}{\tan ^{-1}(r)} \cdot \frac{\ln \left(\tan ^{-1}(r)\right)}{2} \\
& d r\left(\tan ^{-1}(r)\right)=\left(\frac{1}{\tan ^{-1}(r)}\right) \cdot\left(\frac{1}{r^{2}+1}\right) \\
&=\frac{1}{\left(r^{2}+1\right) \tan ^{-1}(r)}
\end{aligned}
$$

(d) $f(x)=x^{\ln (x)}$ Hint: Use logarithmic differentiation (which means to start by taking the natural

$$
\left.\left.\begin{array}{l}
\frac{\ln (f(x))}{x}=\ln \left(x^{\ln x}\right)=(\ln (x))(\ln (x)) \\
\text { take derivative implicitly. }
\end{array}\right] \ln (x)\right]^{2} .
$$

$$
\begin{aligned}
& \text { 2. Compare } f^{\prime}(x) / f(x) \text { and } f^{50}(x) \text { for } \frac{f(x)=P_{0} e^{k t}}{}, \frac{f(x)=x^{2}}{2} \text { and } f(x)=x^{10} \text {. } \\
& f(x)=P_{0} e^{k t} \quad f(x)=x^{2} \quad f(x)=x^{10} 9 \\
& f^{\prime}(x)=k P_{0} e^{k t}=k f(x) \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(x)=10 x \\
& =\frac{2 f(x)}{x} \\
& f^{(50)}(x)=0 \quad f^{(50)}(x)=0 \\
& =\frac{10 \cdot f(x)}{x} \\
& f^{(50)}(x)=k^{50} P_{0} e^{k t}
\end{aligned}
$$

3. Chapter 4 is about applications of the derivative. Section 4.1 is about Related Rate Problems.

Example: A 15 -ft ladder is leaning against a wall. The top of the ladder slides down the wall. Assume that the ladder is rigid and does not shorten or lengthen as it slides. Draw a picture. Label with variables the lengths that are changing over time. Label with constants that things that are fixed. Which variables do you expect to have a positive derivative with respect to time? Negative? Zero? What equations can you think of that related some of the variables in your picture?

positive derivative: x, α ne gative derivative: y, θ zero derivative : 15

- Take derivative implicitly art t-time.
(i) $2 x \frac{d x}{d t}+2 y^{+} \frac{d y}{d t}=0$
(ii) $\cos ^{+}(\theta) \cdot \frac{\bar{d} \theta}{d t}=\frac{1}{15} \cdot \frac{\bar{d}}{d t}$

$$
i x^{2}+y^{2}=15^{2}
$$

(ii)

$$
\sin (\theta)=\frac{y}{15}
$$

$$
\tan (\theta)=I x
$$

$$
\cos (\theta)=x / 15
$$

$$
\sin (\alpha)=x / 15 \quad \tan (\alpha)=x / y
$$

$$
\cos (\alpha)=y / 15
$$

- Think about the signs of things.
- What do you need to know to determine $\frac{d y}{d t}$?
(i) $x, \frac{d x}{d t}, y$. $(A \| ?)$
(14) $\theta, \frac{d \theta}{d t}$

4. A list of derivative rules you will need to know how and when to use.
(a) $\frac{d}{d x}[f(x) g(x)]=\boldsymbol{f}^{\prime} \cdot \boldsymbol{g}+\boldsymbol{f} \cdot \boldsymbol{g}^{\prime}$
(i) $\frac{d}{d x}[\csc (x)]=-\csc (x) \cot (x)$
(b) $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\left(g \cdot f^{\prime}-f \cdot g^{\prime}\right) / \mathbf{g}^{2}$
(j) $\frac{d}{d x}\left[\sin ^{-1}(x)\right]=\frac{1}{\sqrt{1-\mathbf{x}^{2}}}$
(c) $\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
(k) $\frac{d}{d x}\left[\cos ^{-1}(x)\right]=\frac{-1}{\sqrt{1-\mathrm{x}^{2}}}$
(d) $\frac{d}{d x}[\sin (x)]=\cos (x)$
(l) $\frac{d}{d x}\left[\tan ^{-1}(x)\right]=\frac{\mathbf{1}}{\mathbf{1}+\boldsymbol{x}^{2}}$
(e) $\frac{d}{d x}[\cos (x)]=-\sin (x)$
(m) $\frac{d}{d x}\left[e^{x}\right]=e^{x}$
(f) $\frac{d}{d x}[\tan (x)]=\sec ^{2}(x)$
(n) $\frac{d}{d x}\left[a^{x}\right]=\ln (\boldsymbol{a}) \boldsymbol{a}^{\boldsymbol{X}}$
(g) $\frac{d}{d x}[\sec (x)]=\sec (x) \tan (x)$
(o) $\frac{d}{d x}[\ln (x)]=\frac{\mathbf{1}}{\mathbf{X}}$
(h) $\frac{d}{d x}[\cot (x)]=-\csc ^{2}(\boldsymbol{x})$
(p) $\frac{d}{d x}\left[\log _{a}(x)\right]=\frac{1}{(\ln a) \mathbf{x}}$
