1. (A quick refresher from Monday.) Find the derivatives of the functions below.
(a) $y=e^{2 x}+\ln (2 x)$
(b) $y=e^{2}+e^{\sin (c x)}$ where c is a constant.
(c) $y=x^{3} \sin \left(10^{x}\right)$
(d) $w(r)=\ln \left(\tan ^{-1}(r)\right)$
(e) $f(x)=x^{\ln (x)}$ Hint: Use logarithmic differentiation (which means to start by taking the natural \log of both sides of the equation.)
2. For each of the functions: $f(x)=P_{0} e^{k t}, f(x)=x^{2}$ and $f(x)=x^{10}$ write $f^{\prime}(x)$ in terms of $f(x)$. Can you tell what $f^{(50)}$ is?
3. Chapter 4 is about applications of the derivative. Section 4.1 is about Related Rate Problems.

Example: A 15-ft ladder is leaning against a wall. The top of the ladder slides down the wall. Assume that the ladder is rigid and does not shorten or lengthen as it slides. Draw a picture. Label with variables the lengths that are changing over time. Label with constants that things that are fixed. Which variables do you expect to have a positive derivative with respect to time? Negative? Zero? What equations can you think of that related some of the variables in your picture?
4. A list of derivative rules you will need to know how and when to use.
(a) $\frac{d}{d x}[f(x) g(x)]=$
(i) $\frac{d}{d x}[\csc (x)]=$
(b) $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=$
(j) $\frac{d}{d x}\left[\sin ^{-1}(x)\right]=$
(c) $\frac{d}{d x}[f(g(x))]=$
(k) $\frac{d}{d x}\left[\cos ^{-1}(x)\right]=$
(d) $\frac{d}{d x}[\sin (x)]=$
(l) $\frac{d}{d x}\left[\tan ^{-1}(x)\right]=$
(e) $\frac{d}{d x}[\cos (x)]=$
(m) $\frac{d}{d x}\left[e^{x}\right]=$
(f) $\frac{d}{d x}[\tan (x)]=$
(n) $\frac{d}{d x}\left[a^{x}\right]=$
(g) $\frac{d}{d x}[\sec (x)]=$
(o) $\frac{d}{d x}[\ln (x)]=$
(h) $\frac{d}{d x}[\cot (x)]=$
(p) $\frac{d}{d x}\left[\log _{a}(x)\right]=$

