1. What does it mean to say that $y=g(x)$ is the inverse of $y=f(x)$? Give some examples of functions f and g that are inverses of each other? How do you know they are inverses?
g undoes f.
$g(f(x))=x$ and $f(g(x))=x$.
When you do f and then g, (or vice vest) the input is un changed.

The graphs of g and f are reflections about $y=x$.
Inputs and outputs are switched

Examples

$$
\begin{aligned}
& f(x)=2 x, g(x)=\frac{1}{2} x \\
& f(x)=x+10, g(x)=x-10 \\
& f(x)=e^{x}, g(x)=\ln x \\
& f(x)=\frac{1}{x}, g(x)=\frac{1}{x}
\end{aligned}
$$

\rightarrow Use Input \leftrightarrow output switch.
If $f^{-1}(x)=y$ then $f(y)=x$.
You are given the function $f(x)$. Without explicitly finding a formula for $f^{-1}(x)$, find $f^{-1}(1)$ for each function below:
(a) $f(x)=1-\sqrt[3]{x+2}$
(b)

x	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2.0
$f(x)$	20	10	5	3	2.5	2	1.5	1	0.25

We want $f^{-1}(1)=\square$.
So $f(\square)=1$.
So $\square=-2$.
Answer: $f^{-1}(1)=-$

We want $f^{-1}(1)=\square$
So $f(I)=1$ of 1 .
Since $f(1.75)=1$,
we know $f^{-1}(1)=1.75$
4. Solve each equation below for x.

$$
\begin{aligned}
\text { (a) } 10 & =2 e^{x+1} \\
5 & =e^{x+1} \\
\ln (5) & =x+1 \\
x & =(\ln (5))-1
\end{aligned}
$$

(b) $\ln \left(x^{2}-1\right)=1$

$$
\begin{aligned}
& x^{2}-1=e^{1} \\
& x= \pm \sqrt{e+1}
\end{aligned}
$$

5. What does the previous problem have to do with inverses?

We are using $e^{\ln \square}=\square$ and $\ln \left(e^{\square}\right)=\square$ to solve. These properties hold be cause $f(x)=e^{x}$ and $g(x)=\ln x$ are inverses.
6. A wooden ramp is to be built with one end on the ground and the other end at the top of a short staircase. If the top of the staircase is 4 ft from the ground and the angle between the ground and the ramp is to be 10°, how long does the ramp need to be?

7. Convert $2 \pi / 3$ radians to degrees. $\quad\left(\frac{2 \pi}{3} \mathrm{rad}\right)\left(\frac{180 \mathrm{deg}}{\pi \text { rad }}\right)=\frac{2 \cdot 180}{3}=120^{\circ}$ or $\frac{2}{3}(180)=120^{\circ}$
8. Without a calculator evaluate:

(a) $\sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$
(b) $\cos \left(\frac{5 \pi}{4}\right)=-\sqrt{2} / 2$
(c) $\tan \left(\frac{-\pi}{4}\right)=-1$

9. Use graphs to solve the equations below.
(a) $\cos x=1$

(b) $\sin x=1 \quad X=\frac{\pi}{2}+2 \pi K$

Kintecg v
(c) $\tan x=0 \quad \quad \quad=\pi K, \quad K$ integer

(d) $\sin x=1 / 2$ (Find all solutions in $[0,2 \pi]$.)

$$
x=\frac{\pi}{6}, \frac{5 \pi}{6}
$$

10. Find the equation of the line between the points $(-1,2)$ and $(3,6)$.

Slope: $m=\frac{\Delta y}{\Delta x}=\frac{6-2}{3-1}=\frac{4}{4}=1$
line: $y-2=1(x+1)$ or $y=3+x$
11. Assume $P(t)=\sqrt{4 t+4}-2$ gives the distance traveled by a runner in the first 30 seconds of a race where t is measured in seconds and P is measured in meters. (So the domain of P is $[0,30]$.)

$$
\begin{aligned}
& P(3)=\sqrt{4 \cdot 3+4}-2=\sqrt{16}-2=2 \\
& P(15)=\sqrt{4 \cdot 15+4}-2=\sqrt{64}-2=8-2=6
\end{aligned}
$$

a (b) Find the slope, m, of the line between the points $(3, P(3))$ and $(15, P(15))$.

$$
m=\frac{\Delta P}{\Delta t}=\frac{6-2}{15-3}=\frac{4}{12}=\frac{1}{3}
$$

$b \times$ What should the units of m be and why? What does the slope mean in the context of the problem?

$$
\underset{\text { un } m}{\operatorname{units}}=\frac{\text { units of } P}{\text { units oft }}=\frac{\text { meters }}{\text { second }}=\mathrm{m} / \mathrm{s}
$$

In the first 30 seconds, the runner had an average velocity of $\frac{1}{3} \mathrm{~m} / \mathrm{s}$.

