Worksheet: Review of Trigonometry \& Inverse Functions

1. What does it mean to say that $y=g(x)$ is the inverse of $y=f(x)$? Give some examples of functions f and g that are inverses of each other? How do you know they are inverses?
2. There are three particularly useful ways of thinking about trigonometric functions: (A) sides of a right triangle, (B) points on the unit circle in the $x y$-plane, (C) as a graph. Can you describe the sine function in each of these ways?

What is a radian?
3. You are given the function $f(x)$. Without explicitly finding a formula for $f^{-1}(x)$, find $f^{-1}(1)$ for each function below:
(a) $f(x)=1-\sqrt[3]{x+2}$

(b) | x | 0 | 0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | 1.75 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $f(x)$ | 20 | 10 | 5 | 3 | 2.5 | 2 | 1.5 | 1 | 0.25

4. Solve each equation below for x.
(a) $10=2 e^{x+1}$
(b) $\ln \left(x^{2}-1\right)=1$
5. What does the previous problem have to do with inverses?
6. A wooden ramp is to be built with one end on the ground and the other end at the top of a short staircase. If the top of the staircase is 4 ft from the ground and the angle between the ground and the ramp is to be 10°, how long does the ramp need to be?
7. Convert $2 \pi / 3$ radians to degrees.
8. Without a calculator evaluate:
(a) $\sin \left(\frac{2 \pi}{3}\right)$
(b) $\cos \left(\frac{5 \pi}{4}\right)$
(c) $\tan \left(\frac{-\pi}{4}\right)$
9. Use graphs to solve the equations below.
(a) $\cos x=1$
(c) $\tan x=0$
(b) $\sin x=1$
(d) $\sin x=1 / 2$ (Find all solutions in $[0,2 \pi]$.)
10. Find the equation of the line between the points $(-1,2)$ and $(3,6)$.
11. Assume $P(t)=\sqrt{4 t+4}-2$ gives the distance traveled by a runner in the first 30 seconds of a race where t is measured in seconds and P is measured in meters. (So the domain of P is $[0,30]$.)
(a) Find the slope, m, of the line between the points $(3, P(3))$ and $(15, P(15))$.
(b) What should the units of m be and why?
