
REVIEW FOR FINAL EXAM

Topics from Chapter 5:

- §5.1 & 5.2: Approximating Area and the Definite Integral
- §5.3: The Fundamental Theorem of Calculus
- §5.4: The Net Change Theorem

1. Compute the integrals below.
(a)
$$\int_{-1}^{0} (t^{1/3} - t^{2/3}) dt = \frac{t}{43} - \frac{t}{53} = \frac{5}{3} = \frac{3}{4} = \frac{3}{5} = \frac{27}{20}$$

$$= (0) - (\frac{3}{4}(-1)^{3} - \frac{3}{5}(-1)^{3}) = -\frac{3}{4} - \frac{3}{5} = \frac{-27}{20}$$
(b)
$$\int_{0}^{2} x\sqrt{4 - x^{2}} dx = \int_{4}^{0} u^{2}(-\frac{1}{2}du) = -\frac{1}{2} \int_{0}^{4} u^{2} du = -\frac{1}{2} \cdot \frac{32}{2} \Big]_{0}^{4} = -\frac{1}{2} \cdot \frac{2}{3} \cdot u^{2} \Big]_{0}^{4}$$

$$= -\frac{1}{2} \cdot \frac{32}{4} - \frac{32}{2} = -\frac{8}{3}$$

$$= -\frac{1}{3} \cdot \frac{32}{4} - \frac{32}{2} = -\frac{8}{3}$$

(c)
$$\int (x^{2.35} + \frac{3}{4x} + e^x) dx$$

= $\int \left(x^{2.35} + \frac{3}{4} \cdot \frac{1}{x} + e^x \right) dx = \frac{x}{3.35} + \frac{3}{4} \ln|x| + e^x + C$

(d)
$$\int \frac{1}{1+4x^2} dx = \int \frac{1}{1+(2x)^2} dx = \frac{1}{2} \int \frac{1}{1+u^2} du = \frac{1}{2} \arctan(u) + C$$

let $u=2x$
 $du=2dx$
 $\frac{1}{2}du=dx$

(e)
$$\int \sec^2(5x) + e^{3x} dx$$

$$=\frac{1}{5}\tan(5\times)+\frac{1}{3}e^{3\times}+C$$

1 5-1

2. Find and simplify the derivative of the function $h(x) = \int_1^{e^x} x^7 \ln(x) dx$

$$\frac{d}{dx} \int_{1}^{e^{x}} \ln(x) dx = (e^{x})^{\frac{1}{2}} \ln(e^{x}) \cdot e^{x} = e^{x} \cdot x \cdot e^{x} = xe^{x}$$

- 3. A population of chickadees is changing at a rate of r(t) chickadees per year.
 - (a) What does $\int_{1}^{4} r(t) dt = 400$ mean? Make sure to include units in your answer.

Between years 4 and year 1, the net change in chickadee population was 400 chickadees.

(b) Is it possible for $\int_0^{t_0} r(t) dt < 0$ for some time $t_0 > 0$? Explain your answer.

Yes. It would indicate a net loss in the chickaclee population over the first to years.

(c) Evaluate
$$\int_{1}^{4} (5r(t) + 10) dt = 5 \int_{1}^{4} r(t) dt + \int_{1}^{4} l dt + \int_{1}^{4} l dt$$

$$= 5 \left(400 \right) + 10 \cdot (4 - 1) = 2000 + 30$$

$$= 2030.$$

2

A quick review of main ideas/strategies.

- (§4.7) Optimization
- (§4.3 & 4.5) Derivatives, the Shape of a Graph, and Extrema
- (§4.6 & 4.8) Limits, Asymptotes, and L'Hopital's Rule
- (§4.1) Related Rate Problems
- (§4.10) Initial Value Problems
- (§4.2) Linear Approximations and Differentials
- 4. A particle is moving with acceleration $a(t) = t + e^{t/2}$ in meters per second per second. You measure that at time t=0, its position is given by s(0)=0 meters and its velocity is given by v(0)=8meters per second. Determine the position of the particle at time t=1.

$$a(t) = t + e^{t/2}$$

$$v(t) = \int_{0}^{\infty} (t + e^{t/2}) dt$$

$$= \int_{0}^{\infty} t^{2} + 2e^{t/2} + C$$

$$v(0) = 8 = \int_{0}^{\infty} (0)^{2} + 2e^{0} + C$$

$$v(0) = 8 = 2 + C. \quad \frac{3 \circ C = 6}{6}.$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

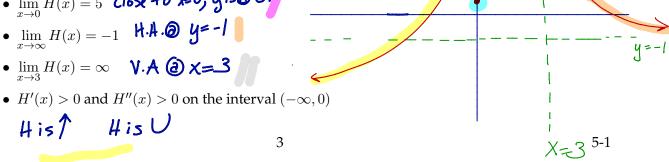
$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$


$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

$$v(t) = \int_{0}^{\infty} t^{2} + 2e^{t/2} + 6 + C$$

- 5. Sketch a graph H(x) with all of the following properties.
 - The domain of H(x) is $(-\infty, 3) \cup (3, \infty)$
 - H(0) = 1 Point (0,1)
 - $\lim_{x\to 0} H(x) = 5$ close to x=0, y = 5.

 - $\lim_{x \to \infty} H(x) = \infty$ V.A ⓐ x = 3
 - H'(x) > 0 and H''(x) > 0 on the interval $(-\infty, 0)$

6. The height of a right circular cylinder is increasing at a rate of 2 meters per second while its volume remains constant. At what rate is the radius changing when the radius is 10 meters and height is 20 meters. (Note, the volume of a cylinder is given by $V = \pi r^2 h$ where r is the radius and h is the height of the cylinder.)

info dh = 2 m/s problem t $\frac{dV}{dI} = 0$ m/s Find dr when r=10, h=20

$$V = \pi r^{2} h$$

$$\frac{dV}{dt} = \pi \left(2r \frac{dr}{dt} \cdot h + r^{2} \frac{dh}{dt} \right)$$

$$0 = \pi \left(2 \cdot 10 \cdot \frac{dr}{dt} \cdot 20 + (10)^{2} (2) \right)$$

$$0 = 400 \frac{dr}{dt} + 200$$

$$So \frac{dr}{dt} = -\frac{200}{400} = -\frac{1}{2} \frac{m}{s}$$

7. Write the equation of the tangent line to
$$f(x) = \sqrt{x}$$
 when $x = 16$ and use it to estimate $\sqrt{16.1}$.
$$f(x) = x^{1/2} \qquad f(16) = 4 \qquad \qquad y - 4 = \frac{1}{8}(x - 16)$$
$$f'(x) = \frac{1}{2} x^{1/2} \qquad f'(16) = \frac{1}{8} = 0.125 \qquad \text{ov} \qquad y = 4 + \frac{1}{8}(x - 16)$$

$$y-4=\frac{1}{8}(x-16)$$

or $y=4+\frac{1}{8}(x-16)$

- 8. Let $f(x) = \sqrt{x}$.

8. Let
$$f(x) = \sqrt{x}$$
.

(a) Write the linearization of $f(x)$ at $a = 16$.

(Same problem as above 1)

$$L(x) = 4 + b(x-16) \text{ or}$$

(b) Use the linearization in part (a) to estimate $\sqrt{16.1}$

$$L(x) = 4 + 0.125(x-16)$$

(b) Use the linearization in part (a) to estimate $\sqrt{16.1}$

$$L(16.1) = 4 + 0.125(16.1 - 16) = 4 + (0.125)(0.1)$$

$$= 4 + 0.0125 = 4.0125$$

(c) Would the linearization from part (a) give a good estimate of $\sqrt{7}$? Explain.