REVIEW FOR FINAL EXAM
Topics from Chapter 5:

e 85.1 & 5.2: Approximating Area and the Definite Integral

e 55.3: The Fundamental Theorem of Calculus

3
12
e §5.4: The Net Change Theorem —
e $5.4-5.7: Integration Formulas and the Method of Substitution
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2. Find and simplify the derivative of the function h(x) = / 2" In(z) dx
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3. A population of chickadees is changing at a rate of () chickadees per year.
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(a) What does / r(t) dt = 400 mean? Make sure to include units in your answer.
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(b) Is it possible for / r(t) dt < 0 for some time t; > 0? Explain your answer.
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A quick review of main ideas/strategies.
e (84.7) Optimization
o (§4.3 & 4.5) Derivatives, the Shape of a Graph, and Extrema
¢ (84.6 & 4.8) Limits, Asymptotes, and L'Hopital’s Rule
e (84.1) Related Rate Problems
e (84.10) Initial Value Problems
e (§4.2) Linear Approximations and Differentials

4. A particle is moving with acceleration a(t) = t+¢/? in meters per second per second. You measure
that at time ¢ = 0, its position is given by s(0) = 0 meters and its velocity is given by v(0) = 8
meters per second. Determine the position of the particle at time ¢ = 1.
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5. Sketch a graph H (x) with all of the following properties.

5 J

|

e The domain of H(z) is (—o0, 3) U (3, 00) l
e HO)=1 Point Co)n) ll
l

o lim H(z) =5 ¢lose +0 x=0, 335@ 5. |
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o limH(z)=co V.A @ x=3

e H'(x) > 0and H"(x) > 0 on the interval (—o0c, 0)
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6. The height of a right circular cylinder is increasing at a rate of 2 meters per second while its volume
remains constant. At what rate is the radius changing when the radius is 10 meters and height is
20 meters. (Note, the volume of a cylinder is given by V = 7r?h where r is the radius and h is the

height of the cylinder.) 3
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7. Write the equation of the tangent line to f(z) = /2 when z = 16 and use it to estimate v/16.1.
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8. Let f(z) = x.

(a) Write the linearization of f(z) at ¢ = 16.

(same problam as abovt 1) (D)= 4 +0.125 (x-1b)
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(b) Use the linearization in part (a) to estimate v/16.1 )
0.
L6 = 4+ 0.125Q0.1-16) = o+ (0-125)(0-])
= qyool2s = 40125

(c) Would the linearization from part (a) give a good estimate of /7? Explain.
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