option2:
algebra
$$\lim_{x\to 5} \frac{1}{(x-5)} \left(\frac{5-x}{5\times} \right) = \lim_{x\to 5} \frac{-(x-5)}{5\times(x-5)} = \lim_{x\to 5} \frac{-1}{5\times} = \frac{1}{25}$$

Formal (b)
$$\lim_{x\to\infty} \frac{2x^2 - 3}{4 + 5x^2}$$
 $\frac{1}{x^2} = \lim_{x\to\infty} \frac{2 - \frac{3}{x^2}}{\frac{4}{x^2} + 5} = \frac{2}{5}$

$$\lim_{x\to 0} \frac{x^2}{1-\cos(x)} \stackrel{\text{def}}{=} \lim_{x\to 0} \frac{2x}{\sin(x)} \stackrel{\text{def}}{=} \lim_{x\to 0} \frac{2}{\cos(x)} = \frac{2}{1} = 2$$

$$\lim_{x\to 0} \frac{x^2}{1-\cos(x)} \stackrel{\text{def}}{=} \lim_{x\to 0} \frac{2x}{\cos(x)} = \frac{2}{1} = 2$$

10. A farmer has 400 meters of fencing and wants to fence off a rectangular field that borders a straight river. No fencing is needed along the river, which forms one side of the rectangle. What are the dimensions of the field that has the largest area?

use
$$400 = 2x + y$$

or $y = 400 - 2x$

$$A(x) = x(400-2x) = 400x - 2x^{2}$$

$$A'(x) = 400 - 4x = 0. \quad \text{So } x = 100$$

$$\text{Justify: } opt1: (1st dir. test) \qquad + + + 0 - - - < sign of 0 = 000 = 000$$

$$opt2: (2nd dir. test)$$

$$A'' = 4400. So A is ccdown: 7$$

A"=-4<0 So 4 is cc down: In both cases A(x) has a max at x= 100.

AUSWER: Dimensions X=100 m, y=200 m.

11. Consider the function f(x) graphed below. Between x = 0 and 2, the graph is of a semicircle of radius 1.

(a) At what x values, if any, does f'(x) not exist?

(b) What is the value of f'(-2)?

What is the value of
$$f'(-2)$$
?

 $f'(-2)$ is slope of f at $x=-2$. So $m=f(-2)=-1$.

(c) Evaluate $\int_{1}^{4} f(x) dx$. = Signed area under f(x).

So
$$0+\frac{\pi \cdot (1)^2}{2}+\frac{1}{2}(2)(1)=\frac{\pi}{2}+1$$

(d) Let $g(x) = \int_1^x f(s) ds$. What is the value of g(0)?

$$g(0) = \int_{0}^{0} f(s)ds = -\int_{0}^{1} f(s)ds = -\left(\frac{1}{4}\pi\right) = -\frac{\pi}{4}$$

(e) For g(x) from part **d.**, what is the value of g'(4).

$$g'(x) = f(x)$$
 by FTC part 1.
So $g'(4) = f(4) = 1_6$