1. DEFINITION: Two-Sided Limit

Notation:

Words:

It means:

Evaluate the limits below numerically. Estimate the limit to 4 decimal places, if possible.
2. $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
3. $\lim _{x \rightarrow 2} \frac{\cos (x)(x-2)}{3 x^{2}-5 x-2}$
4. $\lim _{x \rightarrow-1} \frac{|x+1|}{x+1}$
5. $\lim _{x \rightarrow 1} \frac{1}{x-1}$
6. DEFINITION: One-Sided Limits

Notation:

Limits can also be evaluated graphically.

7. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a) $\lim _{x \rightarrow 4^{-}} g(x)=$ \qquad
(b) $\lim _{x \rightarrow 4^{+}} g(x)=$ \qquad
(c) $\lim _{x \rightarrow 4} g(x)=$ \qquad
(d) $g(4)=$ \qquad
(e) $\lim _{x \rightarrow 8} g(x)=$ \qquad
(f) $g(8)=$ \qquad
8. The function $h(x)$ is graphed below. Use the graph to fill in the blanks.

(a)

$$
\lim _{x \rightarrow 4^{-}} h(x)=
$$

\qquad
(b) $\lim _{x \rightarrow 4^{+}} h(x)=$ \qquad
(c) $\lim _{x \rightarrow 4} h(x)=$ \qquad
(d) $h(4)=$ \qquad
(e) $\lim _{x \rightarrow 8} h(x)=$ \qquad
(f) $h(8)=$ \qquad
9. Find any vertical asymptotes of $f(x)=\frac{2}{x+5}$ and justify your answer using a limit.
10. Sketch the graph of an function that satisfies all of the given conditions. Compare your answer with that of your neighbor.

$$
\begin{array}{lll}
\lim _{x \rightarrow 0^{-}} f(x)=1 & \lim _{x \rightarrow 0^{+}} f(x)=-2 & \lim _{x \rightarrow 4^{-}} f(x)=3 \\
\lim _{x \rightarrow 4^{+}} f(x)=0 \\
f(0)=-2 & f(4)=1
\end{array}
$$

