1. DEFINITION: Two-Sided Limit

Notation:

Words:

It means:

Evaluate the limits below numerically. Estimate the limit to 4 decimal places, if possible.

2.	lim	$\frac{\sin(x)}{2}$	3	3. $\lim_{x \to 2}$	$\cos(x)(x-2)$
	$x \rightarrow 0$	\overline{x}	5.		$3x^2 - 5x - 2$

4.
$$\lim_{x \to -1} \frac{|x+1|}{x+1}$$
 5. $\lim_{x \to 1} \frac{1}{x-1}$

6. DEFINITION: One-Sided Limits

Notation:

Limits can also be evaluated graphically.

8. The function h(x) is graphed below. Use the graph to fill in the blanks.

(a) $\lim_{x \to 4^{-}} h(x) =$ ______ (b) $\lim_{x \to 4^{+}} h(x) =$ ______ (c) $\lim_{x \to 4} h(x) =$ ______ (d) h(4) =_____ (e) $\lim_{x \to 8} h(x) =$ _____ (f) h(8) =_____ 9. Find any vertical asymptotes of $f(x) = \frac{2}{x+5}$ and *justify* your answer using a limit.

10. Sketch the graph of an function that satisfies *all* of the given conditions. Compare your answer with that of your neighbor.

 $\lim_{x \to 0^{-}} f(x) = 1 \quad \lim_{x \to 0^{+}} f(x) = -2 \quad \lim_{x \to 4^{-}} f(x) = 3 \quad \lim_{x \to 4^{+}} f(x) = 0$ $f(0) = -2 \qquad \qquad f(4) = 1$