Section 2-2: The Limit of a Function

1. DEFINITION: two-sided limit

Notation:

Words:

It means:
2. Example 1: Evaluate $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$ numerically.
3. Example 2: Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$ numerically.
4. Example 3: Limits do not always exist. Evaluate each limit below numerically and explain why the limits do not exist.
(a) $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$
(b) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$

It is possible to have one-sided limits. Example 3a at the bottom of page 1 illustrates this.
5. Notation:
$x \rightarrow 2^{-}$means
and
$x \rightarrow 2^{+}$means
(a) $\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}=$
(b) $\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}=$

Limits can also be evaluated graphically.
6. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a) $\lim _{x \rightarrow 4^{-}} g(x)=$ \qquad
(b) $\lim _{x \rightarrow 4^{+}} g(x)=$ \qquad
(c) $\lim _{x \rightarrow 4} g(x)=$ \qquad
(d) $g(4)=$ \qquad
(e) $\lim _{x \rightarrow 8} g(x)=$ \qquad
(f) $g(8)=$ \qquad
7. The function $h(x)$ is graphed below. Use the graph to fill in the blanks.

(a)

$$
\lim _{x \rightarrow 4^{-}} h(x)=
$$

\qquad
(b) $\lim _{x \rightarrow 4^{+}} h(x)=$ \qquad
(c) $\lim _{x \rightarrow 4} h(x)=$ \qquad
(d) $h(4)=$ \qquad
(e) $\lim _{x \rightarrow 8} h(x)=$ \qquad
(f) $h(8)=$ \qquad
8. Find any vertical asymptotes of $f(x)=\frac{2}{x+5}$ and justify your answer using a limit.
9. Sketch the graph of an function that satisfies all of the given conditions. Compare your answer with that of your neighbor.

$$
\begin{array}{lll}
\lim _{x \rightarrow 0^{-}} f(x)=1 & \lim _{x \rightarrow 0^{+}} f(x)=-2 & \lim _{x \rightarrow 4^{-}} f(x)=3 \\
\lim _{x \rightarrow 4^{+}} f(x)=0 \\
f(0)=-2 & f(4)=1
\end{array}
$$

