Section 3-6: The Chain Rule

1. Recall Two Versions of the Chain Rule
2. Understanding what the "formulas" in the book are trying to communicate:
3. Find the derivatives for each function below:
(a) $f(\theta)=4 \tan (\theta / \pi)$.
(b) $g(t)=\sqrt[5]{\sin (7 t)}$
(c) $h(x)=\sin \left(x^{2}-\frac{1}{x^{2}+x}\right)$
4. (Some additional independent practice) Find the derivatives.
(a) $f(x)=(\sec (3 x)+\csc (2 x))^{5}$
(b) $g(x)=\frac{\cot \left(x^{2}+1\right)}{x^{3}+1}$
(c) $h(x)=(2 x-1)^{3}(2 x+1)^{5}$
5. Find all x-values where the tangent to $f(x)=\left(x^{2}-4\right)^{3}$ is horizontal.
6. Use the table below to evaluate the derivatives of the given functions at the indicated value.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-1	2	-1	0	1
0	1	2	3	4
1	-1	-2	-3	-4
2	0	4	-1	2

(a) $h(x)=f(g(x))$ at $a=2$.
(b) $k(x)=f(x) g\left(x^{2}\right)$ at $a=1$

