1. Recall the definition of the derivative:
2. Let $f(x)=e^{x}$. Estimate $f^{\prime}(x)$ (a.k.a. the slope of the tangent line) using the limit definition for each of the values below. (Use a calculator!)
(a) $f^{\prime}(0)$
(b) $f^{\prime}(1)$
(c) $f^{\prime}(2)$
(d) $f^{\prime}(-1)$
3. Derivative Rules for Exponential Functions
4. Examples: Find the derivatives.
(a) $y=x^{4} e^{x}$
(b) $y=e^{x^{2}}$
(c) $y=5^{-x}$
(d) $f(x)=x^{5}+5^{x}$
5. Let $P(t)=P_{0} e^{k t}$. Find $P^{\prime}(t)$ and then write it in terms of $P(t)$.
6. A population of bacteria has an initial population of 200 bacteria. The population is growing at a rate of 4% per hour.
(a) Write an exponential function $P(t)$ that relates the total population as a function of t where the units of t should be hours and the units of P should be number of bacteria.
(b) Find and interpret $P^{\prime}(1)$.
(c) Find and interpret $P^{\prime}(100)$.
(d) Find $P^{\prime}(1) / P(1)$ and $P^{\prime}(100) / P(100)$. What do you observe?
