1. Limits at Infinity: In plain English, what should the symbols below mean?

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=L \\
& \lim _{x \rightarrow-\infty} f(x)=L
\end{aligned}
$$

2. Three Principles (a is a constant) and a Strategy

- If a is a constant, then $\lim _{x \rightarrow \pm \infty} a x=$
- $\lim _{x \rightarrow \pm \infty} \frac{1}{x}=$
- If $\lim _{x \rightarrow \pm \infty} f(x)=a$ and $\lim _{x \rightarrow \pm \infty} g(x)= \pm \infty$, then $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=$
- Strategy: Divide numerator and denominator by the highest power of x in the denominator.

3. Use the Principles to evaluate the limits below. Then, use your calculator to confirm your answer is correct.
(a) $\lim _{x \rightarrow \infty} \frac{2 x^{2}-x}{3 x-5 x^{2}}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x^{3}-x}{3 x-5 x^{2}}$
(c) $\lim _{x \rightarrow \infty} \frac{3 x+\sin (x)}{x}$
(d) $\lim _{x \rightarrow-\infty} \frac{2 x+1}{\sqrt{x^{2}+1}}$
4. Construct a function $f(x)$ with a vertical asymptote at $x=2$ and a horizontal asymptote at $x=5$. Then use limits to demonstrate you are correct.
5. Given $f(x)=\frac{x^{2}}{x^{2}+1}, f^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{2}}, f^{\prime \prime}(x)=\frac{-2\left(3 x^{2}-1\right)}{\left(x^{2}+1\right)^{3}}$. Identify important features of $f(x)$ like: asymptotes, local extrema, inflection points, and make a rough sketch.
