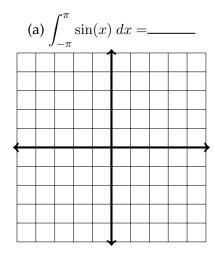
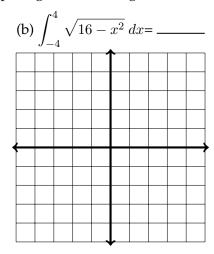
SECTION 5.2: THE DEFINITE INTEGRAL

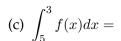

1. **Definition of the Definite Integral:** (abbreviated)

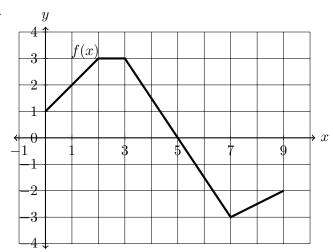

2. Evaluate the definite integrals below using the graph and geometry.

(a)
$$\int_0^4 (8-2x) dx$$

(b)
$$\int_0^6 (8-2x) dx$$

3. Evaluate the following definite integrals by drawing the function and interpreting the integral in terms of areas. Shade in the area you are computing with the integral.


Properties of the Definite Integral:


- $\bullet \int_{a}^{b} f(x) dx = \underline{\qquad}$ $\bullet \int_{a}^{a} f(x) dx = \underline{\qquad}$
- $\bullet \int_{a}^{b} c \, dx = \underline{\hspace{1cm}}$
- $\bullet \int_{a}^{b} cf(x) \ dx = \underline{\hspace{1cm}}$
- $\bullet \int_{a}^{b} [f(x) \pm g(x)] dx = \underline{\hspace{1cm}}$
- $\bullet \int_a^b f(x) + \int_b^c f(x) \, dx = \underline{\qquad}$
- $\bullet \int_{b}^{a} f(x) \ dx = \underline{\hspace{1cm}}$

4. The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.

(a)
$$\int_{0}^{3} 8f(x)dx =$$

(b)
$$\int_{2}^{9} f(x)dx =$$

5. Using the fact that $\int_0^1 x^2 dx = \frac{1}{3}$ and $\int_1^2 x^2 dx = \frac{7}{3}$, evaluate the following using the properties of integrals.

(a)
$$\int_0^1 5x^2 \, dx$$

(b)
$$\int_0^1 (4+3x^2) dx$$
 (c) $\int_0^2 x^2 dx$.

$$\text{(c)} \int_0^2 x^2 \, dx.$$