Worksheet: Review of Trigonometry

1. There are three particularly useful ways of thinking about trigonometric functions: (A) sides of a right triangle, (B) points on the unit circle in the $x y$-plane, (C) as a graph. Can you describe the sine function in each of these ways?
(A) sides of a^{5} triangle

$$
\sin (\theta)=\frac{o p P}{h y p}
$$

$$
E_{x} \frac{5 / 04}{3}
$$

$$
\begin{aligned}
& \sin (\theta)=\frac{4}{5} \\
& \sin (\gamma)=\frac{3}{5}
\end{aligned}
$$

Other trig fins:

$$
\begin{aligned}
& \cos \theta=\frac{a d j}{h y p}, \tan \theta=\frac{o p p}{a d j}=\frac{\sin \theta}{\cos \theta} \\
& \sec \theta=\frac{h y p}{a d j}=\frac{1}{\cos \theta}, \csc \theta=\frac{h y p}{o p p}=\frac{1}{\sin \theta} \\
& \cot (\theta)=\frac{\cos \theta}{\sin \theta}=\frac{a d j}{\partial p p}=\frac{1}{\tan \theta}
\end{aligned}
$$

Special Triangles:

$$
\frac{\pi}{4} \text { radians }=45^{\circ}, \frac{\pi}{6} \mathrm{rad}=30^{\circ}, \frac{\pi}{3}=60^{\circ}
$$

What is a radian?
radian is the angle
So that angle \# = arc length
in unit circle.

$$
\pi \text { radians }=180^{\circ}
$$

answer: $D:(-\infty, \infty) \quad R:[-1,5]$
(c) The graph of $y=\sin (x)$.

Ex) What is the domain trange of $H(x)=2+3 \sin (x)$. thinking: $H(x)=2+3 \sin (x)$ $\prod_{\text {shifts changes amplitude }}^{-3 t \sim}$
 up 2

Answer: Any $\theta=2 \pi k+\frac{\pi}{2}$
for $k=\ldots-2,-1,0,1,2, \ldots$.

$$
\begin{aligned}
& \text { So } \theta=90^{\circ}=\frac{\pi}{2} \\
& \text { or } \theta=360^{\circ}+90^{\circ}=2 \pi \frac{\pi}{2}
\end{aligned}
$$ up 2

2. Sketch the graph of $f(x)=\cos (x)$ from $[-\pi, 4 \pi]$ and the graph of $g(x)=\tan (x)$ from $\left[-\pi / 2, \frac{3 \pi}{2}\right]$.

$$
y=\sin x
$$

(c) $\tan x=0$

$$
x=\ldots,-\pi, 0, \pi, 2 \pi, \ldots
$$

(b) $\sin x=1$

$$
x=\ldots-2 \pi+\frac{\pi}{2}, \frac{\pi}{2}, 2 \pi+\frac{\pi}{2}, \ldots
$$

(d) $\sin x=1 / 2$ (Find all solutions in $[0,2 \pi]$.)

$$
\begin{aligned}
& x=\ldots,-2 \pi+\frac{\pi}{6}, \frac{\pi}{6}, 2 \pi+\frac{\pi}{6}, 4 \pi+\frac{\pi}{6}, \ldots \\
& \\
& \text { and } \\
& x=\cdots,-2 \pi+\frac{5 \pi}{6}, \frac{5 \pi}{6}, 2 \pi+\frac{5 \pi}{6}, \ldots
\end{aligned}
$$

4. Convert $2 \pi / 3$ radians and $5 \pi / 7$ radians to degrees.

$$
\begin{aligned}
\frac{2 \pi}{3} \mathrm{rad}=2\left(\frac{\pi}{3} \mathrm{rad}\right) & =2 \cdot 60^{\circ} \\
& =120^{\circ}
\end{aligned}
$$

$$
\left(\frac{5 \pi}{7} \mathrm{rad}\right)\left(\frac{180^{\circ}}{\pi \mathrm{rad}}\right)=\frac{5(180)}{7}=\frac{900}{7}
$$

5. Convert 20 degrees to radians.

$$
\left(20^{\circ}\right)\left(\frac{\pi \mathrm{rad}}{180^{\circ}}\right)=\frac{20 \pi}{180}=\frac{\pi}{9} \mathrm{rad}
$$

\rightarrow memorize unit circle (See last page)
6. Without a calculator evaluate: Method? \longrightarrow memorize important triangles (See first page.)
(a) $\sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$
(b) $\cos \left(\frac{5 \pi}{4}\right)=\frac{-\sqrt{2}}{2}$
(c) $\tan \left(\frac{-\pi}{4}\right)=\frac{-\sqrt{2} / 2}{\sqrt{2} / 2}=-1$

7. A wooden ramp is to be built with one end on the ground and the other end at the top of a short staircase. If the top of the staircase is 4 ft from the ground and the angle between the ground and the ramp is to be 10°, how long does the ramp need to be?

 make sure you use the correct units in your calculator!
8. Find $\cos \theta$ assuming that $\sin \theta=2 / 7$ and θ is in the first quadrant.

$$
\begin{gathered}
2^{2}+x^{2}=7^{2} \\
x=\sqrt{49-4}=\sqrt{45} \\
\cos (\theta)=\sqrt{45} / 7
\end{gathered}
$$

9. Fill out the unit circle below without the use of a calculator.

