SECtion 2-2: The Limit of a Function

Read Section 2.2. Work the embedded problems.
Goals:

- Understand the meaning of the notation $\lim _{x \rightarrow a} f(x)=L$.
- Know how to evaluate one- and two-sided limits both from a graph and numerically.
- Understand the relationship between infinite limits and vertical asymptotes.

1. DEFINITION: two-sided limit

Notation:

Words:

It means:
2. Evaluate the limits below using the graph and confirm your answers numerically.
(a) $f(x)=\frac{x^{2}-4}{x-2}$

(b) $f(x)=\frac{|x-2|}{x-2}$
(c) $f(x)=\frac{1}{(x-2)^{2}}$

graphically:
$\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=$
$\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}=$
$\lim _{x \rightarrow 2} \frac{1}{(x-2)^{2}}=$
numerically:
3. Numerically or graphically, determine the limits below. Assume a and c are fixed constants.
(a) $\lim _{x \rightarrow 0}=\frac{\sin (x)}{x}$
(b) $\lim _{x \rightarrow 1} 5=$
(c) $\lim _{x \rightarrow 2} 5=$
(d) $\lim _{x \rightarrow a} c=$
(e) $\lim _{x \rightarrow 1} x=$
(f) $\lim _{x \rightarrow 2} x=$
(g) $\lim _{x \rightarrow a} x=$
4. Return to problem $2 b$ above. Evaluate the limits below assuming that
$x \rightarrow 2^{-}$means
and
$x \rightarrow 2^{+}$means
(a) $\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}=$
(b) $\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}=$
5. What must be the relationship between the existence of two-sided limits in terms of one-sided limits?
6. DEFINITION: infinite limits
7. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a)
$\lim _{x \rightarrow 4^{-}} f(x)=$ \qquad
(b)

$$
\lim _{x \rightarrow 4^{+}} f(x)=
$$

\qquad
(c) $\lim _{x \rightarrow 4} f(x)=$ \qquad
(d) $f(4)=$ \qquad
(e) $\lim _{x \rightarrow 8} f(x)=$ \qquad
(f) $f(8)=$ \qquad
8. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a)

$$
\lim _{x \rightarrow 4^{-}} f(x)=
$$

\qquad
(b)

$$
\lim _{x \rightarrow 4^{+}} f(x)=
$$

\qquad
(c) $\lim _{x \rightarrow 4} f(x)=$ \qquad
(d) $f(4)=$ \qquad
(e) $\lim _{x \rightarrow 8} f(x)=$ \qquad
(f) $f(8)=$
9. Find any vertical asymptotes of $f(x)=\frac{2}{x+5}$ and justify your answer using a limit.
10. Sketch the graph of an function that satisfies all of the given conditions. Compare your answer with that of your neighbor.

$$
\begin{array}{lll}
\lim _{x \rightarrow 0^{-}} f(x)=1 & \lim _{x \rightarrow 0^{+}} f(x)=-2 & \lim _{x \rightarrow 4^{-}} f(x)=3 \\
\lim _{x \rightarrow 4^{+}} f(x)=0 \\
f(0)=-2 & f(4)=1
\end{array}
$$

