1. Find the derivative of each of the following. Use whatever rule you choose. Simplify if you have time.

$$
\begin{aligned}
d \operatorname{sx} f(x) & =5 e^{2}+4 x^{3 / 4}+5 x \sin (x) \\
f^{\prime}(x) & =0+4 \cdot \frac{3}{4} x^{-1 / 4}+5 x(+\cos (x))+5 \cdot 1 \cdot \sin (x) \\
& =3 x^{-1 / 4}+5 x \cos (x)+5 \sin (x)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{3}-2 x^{-1}+\frac{1}{2} x+\frac{\cos (x)}{x+6}=2 x^{-2}+\frac{1}{2}+\frac{-((x+6) \sin (x)+\cos (x))}{(x+6)^{2}}
\end{aligned}
$$

2 (8) $H(x)=\frac{1}{3 x}\left(8+x^{2}\right)=\frac{1}{3} x^{-1}\left(8+x^{2}\right)$

$$
\begin{gathered}
=\frac{8}{3} x^{-1}+\frac{1}{3} x \\
H^{\prime}(x)=-\frac{8}{3} x^{-2}+\frac{1}{3}
\end{gathered}
$$

b $x^{(x)} G(x)=\frac{7^{2}}{8+x^{2}} \quad 16 x+2 x^{3}-2 x^{3}$

$$
G^{\prime}(x)=\frac{\left(8+x^{2}\right)(2 x)-x^{2}(2 x)}{\left(8+x^{2}\right)^{2}}=\frac{16 x}{\left(8+x^{2}\right)^{2}}
$$

C. 4$) K(x)=\frac{8+x^{2}}{x^{2}}=8$ x $^{-2}+1$

$$
K^{\prime}(x)=-16 x^{-3}
$$

2. Determine the point (or points) where the graph $f(x)=x^{3}$ has a slope of 2 .

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& m=2 \\
& \text { So } 3 x^{2}=2 \text { or points : } \begin{array}{l}
\left(\sqrt{\frac{2}{3}}\left(\sqrt{\frac{2}{3}}\right)^{3}\right)=\left(\left(\frac{2}{3}\right)^{12},\left(\frac{2}{3}\right)^{3 / 2}\right) \\
x= \pm \sqrt{2 / 3}
\end{array} \quad\left(-\sqrt{\frac{2}{3}},-\left(\sqrt{\frac{\sqrt{2}}{3}}\right)^{3}\right)=\left(-\left(\frac{(2}{3}\right)^{2},-\left(\frac{2}{3}\right)^{32}\right) \\
&
\end{aligned}
$$

3. An ant walking along a sidewalk has traveled $s(t)=t^{4}-2 t^{2}$ inches in $t$ minutes. Find the acceleration of the ant (with units) when the velocity of the ant is 0 .
$S^{\prime}(t)=v(t)=4 t^{3}-4 t<$ units: inches/minute

$$
S^{\prime \prime}(t)=v^{\prime}(t)=a(t)=12 t^{2}-4 \text { _units inches/minutt/minute }=\mathrm{in} / \mathrm{min}^{2}
$$

$v=S^{\prime}=0$ when $4 t^{3}-4 t=4 t\left(t^{2}-1\right)=4 t(t-1)(t+1)=0$ or $t=0,1,-1$.

$$
a(0)=-4, a(1)=8, a(-1)=8 \text { all in } \mathrm{in} / \mathrm{min}^{2}
$$

4. The concentration of an antibiotic in the bloodstream $t$ hours after being injected is given by $C(t)=\frac{2 t^{2}+t}{t^{3}+50}$ where $C$ is measured in milligrams per liter of blood.
(a) Find $C(0)$ and $C(10)$ and explain what these numbers mean in the context of the problem.
$C(0)=0 \quad$ Before the injection, the concentration, in the blood is,
(b) It is a fact that $C^{\prime}(t)=\frac{-2\left(t^{4}+t^{3}-100 t-25\right)}{\left(t^{3}+50\right)^{2}}$. What are the units of $C^{\prime}(x)$ ?
(milligrams per lite) per hour or $m g /$ / $/ \mathrm{hr}$
(c) It is a fact that $C^{\prime}(10)=-0.018$. Interpret this fact in the context of the problem. Use language a Precalculus student could understand.
Ten hours after the injection, the concentration of antibiotic in the blood is decreasing at a rate of $0.018 \mathrm{mg} / \mathrm{L}$ each hour.
(d) Use the fact from parts (a) and (c) to make a guess about $C(11)$.

$$
\begin{aligned}
& \text { Use the fact from parts (a) and (c) to make a guess about } C(11) . \\
& C(11) \approx C(10)+C^{\prime}(10)=0.20-0.018=0.182 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

