Read Section 3.5. Work the embedded problems.

1. (Quick Review)
(a) What's wrong with the solution below? The student's solution is in large font. They were instructed to put a box around their final answer.

Problem: Find the derivative of $f(x)=5 \sin (x)-\frac{x}{3}+\frac{\pi^{2}}{3}$ None of these equalities is correct.
$=5 \sin (x)-\frac{1}{3} x+0=-5 \cos (x)-\frac{1}{3}$ It looks like the student doesn't understand the difference between $f(x)$ and $f^{\prime}(x)$.
(b) If $f(x)=\cos (x)$, then $f^{\prime}(x)=-\sin (x)$.
2. Write all the Pythagorean Trigonometric Identities

$$
\begin{gathered}
\sin ^{2}(x)+\cos ^{2}(x)=1 \quad \sum_{\text {divide }}^{\text {by } \cos ^{2} x} \\
\tan ^{2}(x)+1=\sec ^{2}(x) \\
1+\cot ^{2}(x)=\csc ^{2}(x)
\end{gathered}
$$

3. Rewrite each trigonometric function below in terms of sines and cosines, then use known derivafive rules (product, quotient, sine, cosine, etc.) to find their derivatives.
(a) $f(x)=\tan (x)=\frac{\sin (x)}{\cos (x)}$

$$
f^{\prime}(x)=\frac{\cos (x)(\cos (x))-(\sin (x))(-\sin (x))}{\cos ^{2}(x)}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2}(x)}=\sec ^{2} x
$$

(b) $f(x)=\cot (x)=\frac{\cos (x)}{\sin (x)}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\sin (x)(-\sin (x))-\cos (x)(\cos (x))}{\sin ^{2}(x)}=\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x}=\frac{-1}{\sin ^{2} x} \\
& =-\csc ^{2} x \\
& \text { (c) } f(x)=\sec (x)=\frac{1}{\cos x} \\
& f^{\prime}(x)=\frac{(\cos (x))(0)-1(-\sin (x))}{\cos ^{2} x}=\frac{\sin (x)}{\cos ^{2}(x)}=\frac{\sin (x)}{\cos (x)} \cdot \frac{1}{\cos (x)}=(\tan (x))(\sec (x))
\end{aligned}
$$

(d) $f(x)=\csc (x)=\frac{1}{\sin (x)}$

$$
f^{\prime}(x)=\frac{\sin (x) \cdot 0-1(\cos (x))}{\sin ^{2}(x)}=\frac{-\cos (x)}{\sin ^{2}(x)}=\frac{-\cos (x)}{\sin (x)} \cdot \frac{1}{\sin (x)}=-\cot (x) \csc (x)
$$

$$
\begin{aligned}
& \text { 4. SUMMARY RULES: } \\
& \text { and } \quad \frac{d}{2 x}[\sec (x)]=\sec (x) \tan (x) \\
& \rightarrow \frac{d}{d x}[\cot (x)]=-\csc ^{2}(x) \quad \frac{d}{d x}[\csc (x)]=-\csc (x) \cot (x)
\end{aligned}
$$

5. A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is $x(t)=8 \sin (t)$, where t is in seconds and x is in centimeters.
(a) Find the velocity and acceleration at time t.

$$
\begin{aligned}
& v(t)=x^{\prime}(t)=8 \cos (t) \quad \mathrm{cm} / \mathrm{sec} \\
& a(t)=x^{\prime \prime}(t)=-8 \sin (t) \leftarrow \mathrm{cm} / \mathrm{sec}^{2}
\end{aligned}
$$

Use this \rightarrow

(b) Find the position, velocity, and acceleration of the mass at time $t=2 \pi / 3$. In what direction is it moving at this time? Is it speeding up or slowing down?

$$
\begin{aligned}
& x(2 \pi / 3)=8 \sin (2 \pi / 3)=8\left(\frac{\sqrt{3}}{2}\right)=4 \sqrt{3} \mathrm{~cm} \\
& v(t)=8 \cos (2 \pi / 3)=8\left(\frac{-1}{2}\right)=-4 \mathrm{~cm} / \mathrm{sec} \\
& a(t)=-8 \sin (2 \pi / 3)=-8\left(\frac{\sqrt{3}}{2}\right)=-4 \sqrt{3} \mathrm{~cm} / \mathrm{sec}^{2}
\end{aligned}
$$

Direction?

- to the left bloc $V<0$
Speeding up/slowing? - speeding up $b / c V$ and a are both negative.
(d) $f(x)=\csc (x)$

4. SUMMARY RULES:

5. A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is $x(t)=8 \sin (t)$, where t is in seconds and x is in centimeters.
(a) Find the velocity and acceleration at time t.
(b) Find the position, velocity, and acceleration of the mass at time $t=2 \pi / 3$. In what direction is it moving at this time? Is it speeding up or slowing down?
