Read Section 3.6. Work the embedded problems.

1. Two Versions of the Chain Rule

2. Use version B to find $\frac{dy}{dx}$ if $y = 3\sqrt{u}$ and $u = \cos(x) + 1$.

3. For each function below, decompose the function into the form y = f(u) and u = g(x) and then find $\frac{dy}{dx}$ using version B.

(a)
$$y = (3x - 5)^8$$

(b)
$$y = \frac{1}{x^3 + \tan(x)}$$

4. Find $\frac{dy}{dx}$ using version A.

(a)
$$y = (\frac{1}{x^2} + \frac{x^2}{3})^4$$

(b) $y = \cos(2x)$

(c)
$$y = \sqrt{x^2 + \sin(x)}$$

(d)
$$y = x \tan(\frac{\pi x}{4})$$

(e)
$$y = \frac{x}{\sin^2(x)}$$