SECTION 3-6: THE CHAIN RULE

1. Recall Two Versions of the Chain Rule

2. Understanding what the "formulas" in the book are trying to communicate:

3. Find the derivatives for each function below:

(a)
$$f(\theta) = 4\tan(\theta/\pi)$$
.

(b)
$$g(t) = \sqrt[5]{\sin(7t)}$$

(c)
$$h(x) = \sin(x^2 - \frac{1}{x^2 + x})$$

4. (Some additional independent practice) Find the derivatives.

(a)
$$f(x) = (\sec(3x) + \csc(2x))^5$$

(b)
$$g(x) = \frac{\cot(x^2+1)}{x^3+1}$$

(c)
$$h(x) = (2x-1)^3(2x+1)^5$$

5. Find all *x*-values where the tangent to $f(x) = (x^2 - 4)^3$ is horizontal.

6. Use the table below to evaluate the derivatives of the given functions at the indicated value.

x	f(x)	f'(x)	g(x)	g'(x)
-1	2	-1	0	1
0	1	2	3	4
1	-1	-2	-3	-4
2	0	4	-1	2

(a)
$$h(x) = f(g(x))$$
 at $a = 2$.

(b)
$$k(x) = f(x)g(x^2)$$
 at $a = 1$