1. Motivating questions: How can we find slope of the tangent / velocity for a graph that looks like the one below?

Tangent line to $y^{3}+x^{3}=3 x y$ at $(3 / 2,3 / 2)$?

$$
\begin{aligned}
& 3 y^{2} \frac{d y}{d x}+3 x^{2}=3 \cdot 1 \cdot y+3 x \frac{d y}{d x} \\
& 3 y^{2} \frac{d y}{d x}-3 x \frac{d y}{d x}=3 y-3 x^{2} \\
& \frac{d y}{d x}\left(3 y^{2}-3 x\right)=3 y-3 x^{2} \\
& \frac{d y}{d x}=\frac{3 y-3 x^{2}}{3 y^{2}-3 x} ;\left.\frac{d y}{d x}\right|_{(33,3,2)}=\frac{3\left(\frac{3}{2}\right)-3\left(\frac{3}{2}\right)^{2}}{3\left(\frac{3}{2}\right)^{2}-3\left(\frac{3}{2}\right)}=-1=m_{\tan } j
\end{aligned}
$$

line: $y-\frac{3}{2}=-1\left(x-\frac{3}{2}\right)$ or

$$
y=3-x
$$

2. What is the derivative of: $\quad(f(x))^{3} \quad$?

$$
3(f(x))^{2} \cdot f^{\prime}(x)
$$

3. Repeat question 2 above but with Leibniz notation. What is $d y / d x$ for: $(y)^{3}$?

$$
3 y^{2} \cdot \frac{d y}{d x}
$$

That is, we are substituting:

$$
\begin{aligned}
& f(x)=y \\
& f^{\prime}(x)=\frac{d y}{d x}
\end{aligned}
$$

4. What is the derivative of $3 x g(x)$?

$$
3 \cdot 1 \cdot g(x)+3 x \cdot g^{\prime}(x)=3 g(x)+3 x g^{\prime}(x)
$$

5. Repeat question 4 above but with Leibniz notation. What is $d y / d x$ for: $3 x y$?

$$
3 \cdot 1 \cdot y+3 x \frac{d y}{d x}=3 y+3 x \frac{d y}{d x}
$$

6. Find $d y / d x$ for each expression below.

$$
\text { (a) } x^{2}+y^{3}=\cos (x)+\sin (y)+\pi / 2
$$

$$
\begin{aligned}
& \text { (a) } x^{2}+y^{3}=\cos (x)+\sin (y)+\pi / 2 \\
& 2 x+3 y^{2} \frac{d y}{d x}=-\sin (x)+\cos (y) \cdot \frac{d y}{d x}+0
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{-2 x-\sin (x)}{3 y^{2}-\cos (y)}
$$

$$
3 y^{2} \frac{d y}{d x}-\cos (y) \frac{d y}{d x}=-2 x-\sin (x)
$$

$$
\frac{d y}{d x}\left(3 y^{2}-\cos (y)\right)=-2 x-\sin (x)
$$

$$
\frac{d y}{d x} \cdot \cos (x)-y \sin (x)+2=2(y+1) \cdot \frac{d y}{d x}>\frac{d y}{d x}=\frac{2-y \sin (x)}{2(y+1)-\cos (x)}
$$

$$
\text { (b) } y \cos (x)+2 x=(y+1)^{2}
$$

$$
2-y \sin (x)=2(y+1) \frac{d y}{d x}-\cos (x) \frac{d y}{d x}
$$

$$
2-y \sin (x)=(2(y+1)-\cos (x)) d y
$$

$$
\begin{aligned}
& 1+\sec ^{2}(x y)\left[1 \cdot y+x \frac{d y}{(x)}\right]=0 \\
& 1+y \sec ^{2}(x y)+x \sec ^{2}(x y) \frac{d y}{d x}=0
\end{aligned} \quad \frac{d y}{d x}=\frac{-1-y \sec ^{2}(x y)}{x \sec ^{2}(x y)}
$$

$$
1+y \sec ^{2}(x y)+x \sec ^{2}(x y) \frac{d y}{d x}=0
$$

7. For the equation $x^{2}+x y+y^{2}=9$,
(a) Find the x intercepts).
when $y=0$. So $x^{2}=9$ or $x= \pm 3$
(b) Find the slope of the tangent lines at the x-intercepts.

$$
\begin{aligned}
& \text { Find dyddx. } \\
& 2 x+y+x \frac{d y}{d x}+2 y \frac{d y}{d x}=0 \\
& \text { at }(\pm 3,0)(x+2 y) \frac{d y}{d x}=-2 x-y \text {; So } \frac{d y}{d x}=-2
\end{aligned}
$$

(c) Write the equations of the tangent lines at the x-intercepts.

$$
y=-2(x+3), \quad y=-2(x-3)
$$

