SECTION 4.10 ANTIDERIVATIVES

- (families of) antiderivatives
- indefinite integrals
- initial value problems
- 1. Find the (family of) antiderivatives for the following.

(a)
$$f(x) = 4x^3$$

(b)
$$f(x) = 5\sin(x)$$

(c)
$$f(x) = \frac{e^x}{4}$$

(d)
$$f(x) = \sqrt{2}$$

(e)
$$f(x) = \frac{1}{x}$$

(f)
$$f(x) = 1 - x + e^x$$

2. Is $F(x) = x + xe^x$ is an antiderivative of $f(x) = (x+1)e^x + 1$? Show your answer is correct.

Function	Antiderivative
$x^k (k \neq -1)$	
x^{-1} for all x	
1	
$\sin(x)$	
$\cos(x)$	

Function	Antiderivative
e^x	
$1/(1+x^2)$	
$\sec^2(x)$	
$\sec(x)\tan(x)$	
$1/\sqrt{1-x^2}$	

3. Evaluate the integrals.

(a)
$$\int (x^{1/2} + x^{-7/4} dx)$$

(b)
$$\int (8e^x + \sec^2(x)) dx$$

(c)
$$\int \frac{x^2 + x^{1/2} + 1}{x^{1/2}} dx$$

4. Is the equality in the box true or false? Explain.

$$\int x \sec^2(x^2 + 1) \, dx = \tan(x^2 + 1) + C$$

5. Solve the initial value problem if $f'(x) = x + e^x$ and f(0) = 4.

6. A particle moving along the x-axis has acceleration $a(t)=10\sin(t)$ measured in cm/s^2 . Assume the particle as initial velocity v(0)=0 and initial position s(0)=0, find a function that models its velocity, v(t), and its position s(t).