1. Quick Review: Evaluate the following.

$$
\begin{aligned}
\text { (a) } \int\left(\frac{x}{3}-\sin (x)\right) d x & \quad \text { (b) } \int_{0}^{5}\left(3-e^{x}\right) d x \\
=\frac{x^{2}}{6}+\cos (x)+C \| & \left.3 x-e^{x}\right]_{0}^{5} \\
& =\left(15-e^{5}\right)-\left(0-e^{0}\right) \\
& =15-e^{5}+1=16-e^{5}
\end{aligned}
$$

$$
\text { (c) } \frac{d}{d x}\left(\int_{1}^{x^{2}}(\ln (t)) d t\right)
$$

2. Assume $P^{\prime}(t)$ gives the rate of change in a population of ants over time where time t is measured in days and $P^{\prime}(t)$ is measured in hundreds of ants per day. Use the table below to answer the questions.

(a) Interpret $P^{\prime}(14)=2.4$. At day 14 , the colony is adding 240 ants each day.
(b) Estimate how much the ant population increased in the first three weeks. Include units with your answer.

- $7(1.9)+7(2.4)+7(2.7)=49$. Estimate 4,900 ants (Many different answers Len. This is probably an over -estinat) (c) What would $\int_{0}^{21} P^{\prime}(t) d t$ represent? (The

The number of ants added to the colony in the first 3 weeks. The units would be hundreds of ants.
(d) What would $P(t)$ represent? What is $P(14)$?
$P(t)$ would be the $\#$ of ants in th colone. We don't know $P(14)$ be cause we dint know how many ants the colony started with.
3. The Net Change Theorem:

The integral of a rate of change is the net change:

$$
\int_{a}^{b} F(A) d t=F\left(C_{0}\right)-F(a)
$$

4. Let $w^{\prime}(t)$ be the rate of growth of a child in pounds per year.
(a) What does $\int_{5}^{10} w^{\prime}(t) d t$ represent? (Write a complete sentence a regular person could understand.)
It represents how much weight the child gained in pounds from 5 years of age to 10 years of age.
(b) Explain what $w(10)$ represents.
$w(10)$ would represent the child's weight at 10 yeas of age.
5. Snow is falling on my garden at a rate of $m^{\prime}(t)=6 t$ kilograms per hour for $0 \leq t \leq 2$ where t is measured in hours.
(a) Find and interpret $m^{\prime}(1)$.
$m^{\prime}(1)=6.1=6 \mathrm{~kg} / \mathrm{hr}$. It is the rate at which show is falling at 1 hour.
(b) Find an interpret $\int_{0}^{2} m^{\prime}(t) d t$

It is the mass of snow

$$
\int_{0}^{2} 6 t d t=\left.3 t^{2}\right|_{0} ^{2}=12 \mathrm{~kg}
$$ addled to my garden during the two hours.

(c) In this context, what would $m(0)=13$ represent?

The mass of snow on my garden when the model started (when $t=0$.)
(d) Find and interpret $m(2)$.

$$
m(2)=m(0)+\int_{0}^{2} m^{\prime}(t) d t=13+12=25 \mathrm{~kg}
$$

6. The height of water in a cylindrical tank is modeled by $h^{\prime}(t)=3 \sin (t)$ where h^{\prime} is measured in meters per hour and t is measured in hours. It is a fact that

$$
\int_{0}^{\pi} h^{\prime}(t) d t=\mathbf{6} \text { and } \int_{\pi}^{2 \pi} h^{\prime}(t) d t=-6 .
$$

(You should check this on your own.)
Use the information to find $\int_{0}^{2 \pi} h^{\prime}(t) d t$. Can you explain what is happening in this tank? Do you think the tank is running out of water?

$$
\int_{0}^{2 \pi} h^{\prime}(t) d t=\int_{0}^{\pi} h^{\prime}(t) d t+\int_{\pi}^{2 \pi} h^{\prime}(t) d t=6-6=0
$$

The height of the water is sometimes increasing d some times dereasing. We don't know the height of the water. We only know that the height is fluctuating.

