SECTION 5.4: THE NET CHANGE THEOREM

1. Quick Review: Evaluate the following.

(a)
$$\int \left(\frac{x}{3} - \sin(x)\right) dx$$
 (b) $\int_0^5 (3 - e^x) dx$ (c) $\frac{d}{dx} \left(\int_1^{x^2} (\ln(t)) dt\right)$

2. Assume P'(t) gives the rate of change in a population of ants over time where time *t* is measured in days and P'(t) is measured in hundreds of ants per day. Use the table below to answer the questions.

t						
P'(t)	0	1.9	2.4	2.7	3.0	3.2

- (a) Interpret P'(14) = 2.4.
- (b) Estimate how much the ant population increased in the first three weeks. Include units with your answer.

(c) What would
$$\int_0^{21} P'(t) dt$$
 represent?

(d) What would P(t) represent? What is P(14)?

3. The Net Change Theorem:

- 4. Let w'(t) be the rate of growth of a child in pounds per year.
 - (a) What does $\int_{5}^{10} w'(t) dt$ represent? (Write a complete sentence a regular person could understand.)
 - (b) Explain what w(10) represents.
- 5. Snow is falling on my garden at a rate of m'(t) = 6t kilograms per hour for $0 \le t \le 2$ where *t* is measured in hours.
 - (a) Find and interpret m'(1).

(b) Find an interpret
$$\int_0^2 m'(t) dt$$

- (c) In this context, what would m(0) = 13 represent?
- (d) Find and interpret m(2).
- 6. The height of water in a cylindrical tank is modeled by $h'(t) = 3\sin(t)$ where h' is measured in meters per hour and t is measured in hours. It is a fact that

$$\int_0^{\pi} h'(t)dt = 6$$
 and $\int_{\pi}^{2\pi} h'(t)dt = -6$.

(You should check this on your own.)

Use the information to find $\int_0^{2\pi} h'(t) dt$. Can you explain what is happening in this tank? Do you think the tank is running out of water?

2