
- 1. Review from Section 3.2.
 - (a) State the definition of f'(x) using the "*h*"-notation and use it to find f'(x) for at least one of the functions in the list: $f_1(x) = C$, $f_2(x) = x$, $f_3(x) = x^2$, $f_4(x) = x^3$, $f_5(x) = x^{-1}$, $f_6(x) = x^{1/2}$.

(b) Use the graphs of $f(x) = \sin(x)$ and $g(x) = \cos(x)$ (below) to sketch the graph of their derivatives f'(x) and g'(x).

- (c) Use the work from the previous problems to fill in the blanks below:
 - i. $\frac{d}{dx} [C] =$ iii. $\frac{d}{dx} [\sin(x)] =$ ii. $\frac{d}{dx} [x^n] =$ iv. $\frac{d}{dx} [\cos(x)] =$

2. Use your intuition to evaluate the derivatives of the functions below and *ask yourself what assumptions you are making.*

(a)
$$S(x) = x^5 + \sin(x)$$
 (b) $M(x) = 20\cos(x)$

- 3. Summary Rules
 - (a) Sum and Difference (b) Constant Multiple

(c) Product

(d) Quotient

4. Find the derivatives of the functions below.

(a)
$$K(\theta) = \theta^{1/3} \sin(\theta)$$
 (b) $j(x) = \frac{\cos(x) + \sqrt{2}}{x+1}$