1. Review from Section 3.2.
(a) State the definition of $f^{\prime}(x)$ using the " h "-notation and use it to find $f^{\prime}(x)$ for at least one of the functions in the list: $f_{1}(x)=C, f_{2}(x)=x, f_{3}(x)=x^{2}, f_{4}(x)=x^{3}, f_{5}(x)=x^{-1}, f_{6}(x)=x^{1 / 2}$.
(b) Use the graphs of $f(x)=\sin (x)$ and $g(x)=\cos (x)$ (below) to sketch the graph of their derivatives $f^{\prime}(x)$ and $g^{\prime}(x)$.
$f(x)=\sin (x)$

$g(x)=\cos (x)$

(c) Use the work from the previous problems to fill in the blanks below:
i. $\frac{d}{d x}[C]=$
iii. $\frac{d}{d x}[\sin (x)]=$
ii. $\frac{d}{d x}\left[x^{n}\right]=$
iv. $\frac{d}{d x}[\cos (x)]=$
2. Use your intuition to evaluate the derivatives of the functions below and ask yourself what assumptions you are making.
(a) $S(x)=x^{5}+\sin (x)$
(b) $M(x)=20 \cos (x)$
3. Summary Rules
(a) Sum and Difference
(b) Constant Multiple
(c) Product
(d) Quotient
4. Find the derivatives of the functions below.
(a) $K(\theta)=\theta^{1 / 3} \sin (\theta)$
(b) $j(x)=\frac{\cos (x)+\sqrt{2}}{x+1}$
