1. (Revisit the spring problem:) A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is $x(t)=8 \sin (t)$, where t is in seconds and x is in centimeters.
(a) We found:
$v(t)=x^{\prime}(t)=8 \cos (t)$ and $a(t)=v^{\prime}(t)=x^{\prime \prime}(t)=-8 \sin (t)$
(b) We found:
$x(2 \pi / 3)=4 \sqrt{3} \mathrm{~cm}$
$x^{\prime}(2 \pi / 3)=-4 \mathrm{~cm} / \mathrm{s}$
$x^{\prime \prime}(2 \pi / 3)=-4 \sqrt{3} \mathrm{~cm} / \mathrm{s}^{2}$
At $t=2 \pi / 3$, the mass is moving to the left and slowing down.
(c) Draw a picture of the motion of the mass and include the time(s) at which the mass changes direction.
2. Higher Order Derivatives. For each function below, find $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x), f^{(4)}(x), f^{(82)}(x)$
(a) $f(x)=x^{5}+2 x^{2}+1$
(b) $f(x)=2 \sin (x)$
3. Other ways of denoting derivatives.
