SECTION 3-8: Implicit Differentiation

1. Motivating questions: How can we find slope of the tangent / velocity for a graph that looks like the one below?

2. What is $\frac{d}{d x}\left[(f(x))^{3}\right]$?
3. Repeat question 2 above but with Leibniz notation assuming $y=y(x)$. Find $d y / d x$ for $(y)^{3}$.
4. Find $\frac{d}{d x}[3 x g(x)]$.
5. Find $d y / d x$ for $3 x y$ assuming $y=y(x)$.
6. Find $d y / d x$ for each expression below.
(a) $x^{2}+y^{3}=\cos (x)+\sin (y)+\pi / 2$
(b) $y \cos (x)+2 x=(y+1)^{2}$
(c) $x+\tan (x y)=5$
7. For the equation $x^{2}+x y+y^{2}=9$,
(a) Find the x intercept(s).
(b) Find the slope of the tangent lines at the x-intercepts.
(c) Write the equations of the tangent lines at the x-intercepts.
