SECTION 3-8: IMPLICIT DIFFERENTIATION

1. Motivating questions: How can we find slope of the tangent / velocity for a graph that looks like the one below?

Tangent line to $y^3 + x^3 = 3xy$ at (3/2, 3/2)?

- 2. What is $\frac{d}{dx} [(f(x))^3]$?
- 3. Repeat question 2 above but with Leibniz notation assuming y=y(x). Find dy/dx for $(y)^3$.
- 4. Find $\frac{d}{dx}[3xg(x)]$.
- 5. Find dy/dx for 3xy assuming y = y(x).

6. Find dy/dx for each expression below.

(a)
$$x^2 + y^3 = \cos(x) + \sin(y) + \pi/2$$

(b)
$$y\cos(x) + 2x = (y+1)^2$$

(c)
$$x + \tan(xy) = 5$$

- 7. For the equation $x^2 + xy + y^2 = 9$,
 - (a) Find the x intercept(s).
 - (b) Find the slope of the tangent lines at the *x*-intercepts.

(c) Write the equations of the tangent lines at the x-intercepts.