1. Recall the definition of the derivative:
2. Let $f(x)=e^{x}$. Estimate $f^{\prime}(x)$ (a.k.a. the slope of the tangent line) using the limit definition for each of the values below. (Use a calculator!)
(a) $f^{\prime}(0)$
(b) $f^{\prime}(1)$
(c) $f^{\prime}(2)$
(d) $f^{\prime}(-1)$
3. Derivative Rules for Exponential Functions
4. Examples: Find the derivatives.
(a) $y=x^{4} e^{x}$
(b) $y=e^{x^{2}}$
(c) $y=5^{-x}$
(d) $f(x)=x^{5}+5^{x}$
5. A population of bacteria is modeled by the equation $P(t)=100 e^{0.04 t}$ where P is the number of bacterial and t is measured in hours.
(a) Find $P(0), P(1)$, and $P(100)$. Give units with your answers. What do these numbers represent?
(b) Find $P^{\prime}(0), P^{\prime}(1)$, and $P^{\prime}(100)$. Give units with your answers. What do these numbers represent?
(c) Find $P^{\prime}(0) / P(0), P^{\prime}(1) / P(1)$ and $P^{\prime}(100) / P(100)$. What do these numbers represent?
6. Let $P(t)=P_{0} e^{k t}$. Find $P^{\prime}(t) / P(t)$ and use this to explain what k represents.
